Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 95, Issue 6, Pages 803–811
DOI: https://doi.org/10.4213/mzm10250
(Mi mzm10250)
 

The Resonance Theorem for Subspaces

E. I. Berezhnoi

P. G. Demidov Yaroslavl State University
References:
Abstract: Under some additional assumptions on an unbounded sequence of operators and the geometry of the spaces, it is shown that, in the classical Banach–Steinhaus resonance theorem, the set of divergence contains an infinite-dimensional space, excluding zero.
Keywords: Banach–Steinhaus resonance theorem, Banach space, Banach couple, linear operator, set of divergence, Hahn–Banach theorem.
Received: 08.02.2013
Revised: 07.10.2013
English version:
Mathematical Notes, 2014, Volume 95, Issue 6, Pages 753–759
DOI: https://doi.org/10.1134/S0001434614050186
Bibliographic databases:
Document Type: Article
UDC: 517.5+513.88
Language: Russian
Citation: E. I. Berezhnoi, “The Resonance Theorem for Subspaces”, Mat. Zametki, 95:6 (2014), 803–811; Math. Notes, 95:6 (2014), 753–759
Citation in format AMSBIB
\Bibitem{Ber14}
\by E.~I.~Berezhnoi
\paper The Resonance Theorem for Subspaces
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 6
\pages 803--811
\mathnet{http://mi.mathnet.ru/mzm10250}
\crossref{https://doi.org/10.4213/mzm10250}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3306217}
\elib{https://elibrary.ru/item.asp?id=21826504}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 6
\pages 753--759
\crossref{https://doi.org/10.1134/S0001434614050186}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338338200018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903387472}
Linking options:
  • https://www.mathnet.ru/eng/mzm10250
  • https://doi.org/10.4213/mzm10250
  • https://www.mathnet.ru/eng/mzm/v95/i6/p803
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024