Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 6, Pages 932–938
DOI: https://doi.org/10.4213/mzm10245
(Mi mzm10245)
 

This article is cited in 1 scientific paper (total in 2 paper)

Sharp Constant in Jackson's Inequality with Modulus of Smoothness for Uniform Approximations of Periodic Functions

S. A. Pichugov

Dnepropetrovsk National University of Railway Transport
Full-text PDF (436 kB) Citations (2)
References:
Abstract: It is proved that, in the space $\mathrm{C}_{2\pi}$, for all $k,n\in\mathbb N$, $n>1$, the following inequalities hold:
$$ \biggl(1-\frac {1}{2n}\biggr)\frac{k^2+1}{2}\le \sup_{\substack{f\in \mathrm{C}_{2\pi}\\ f\ne\mathrm{const}}} \frac{{e}_{n-1}(f)}{\omega_2(f,\pi/(2nk))}\le \frac{k^2+1}{2}\mspace{2mu}. $$
where ${e}_{n-1}(f)$ is the value of the best approximation of $f$ by trigonometric polynomials and $\omega_2(f,h)$ is the modulus of smoothness of $f$. A similar result is also obtained for approximation by continuous polygonal lines with equidistant nodes.
Keywords: Jackson's inequality, periodic function, trigonometric polynomial, modulus of smoothness, polygonal line, Steklov mean, Favard sum.
Received: 22.04.2012
English version:
Mathematical Notes, 2013, Volume 93, Issue 6, Pages 917–922
DOI: https://doi.org/10.1134/S0001434613050295
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: S. A. Pichugov, “Sharp Constant in Jackson's Inequality with Modulus of Smoothness for Uniform Approximations of Periodic Functions”, Mat. Zametki, 93:6 (2013), 932–938; Math. Notes, 93:6 (2013), 917–922
Citation in format AMSBIB
\Bibitem{Pic13}
\by S.~A.~Pichugov
\paper Sharp Constant in Jackson's Inequality with Modulus of Smoothness for Uniform Approximations of Periodic Functions
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 6
\pages 932--938
\mathnet{http://mi.mathnet.ru/mzm10245}
\crossref{https://doi.org/10.4213/mzm10245}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206045}
\zmath{https://zbmath.org/?q=an:06198933}
\elib{https://elibrary.ru/item.asp?id=20731748}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 6
\pages 917--922
\crossref{https://doi.org/10.1134/S0001434613050295}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321274300029}
\elib{https://elibrary.ru/item.asp?id=20438971}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879771027}
Linking options:
  • https://www.mathnet.ru/eng/mzm10245
  • https://doi.org/10.4213/mzm10245
  • https://www.mathnet.ru/eng/mzm/v93/i6/p932
    Errata
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:465
    Full-text PDF :191
    References:68
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024