Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 5, Pages 658–664
DOI: https://doi.org/10.4213/mzm10231
(Mi mzm10231)
 

This article is cited in 5 scientific papers (total in 5 papers)

Continuous Derivations on $*$-Algebras of $\tau$-Measurable Operators Are Inner

A. F. Ber

DCF Technologies Ltd.
Full-text PDF (425 kB) Citations (5)
References:
Abstract: It is proved that every continuous derivation on the $*$-algebra $S(\mathcal{M},\tau)$ of all $\tau$-measurable operators affiliated with a von Neumann algebra $\mathcal{M}$ is inner. For every properly infinite von Neumann algebra $\mathcal{M}$, any derivation on the $*$-algebra $S(\mathcal{M},\tau)$ is inner.
Keywords: von Neumann algebra, properly infinite, $\tau$-measurable operator, continuous derivation.
Received: 14.12.2012
English version:
Mathematical Notes, 2013, Volume 93, Issue 5, Pages 654–659
DOI: https://doi.org/10.1134/S0001434613050027
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. F. Ber, “Continuous Derivations on $*$-Algebras of $\tau$-Measurable Operators Are Inner”, Mat. Zametki, 93:5 (2013), 658–664; Math. Notes, 93:5 (2013), 654–659
Citation in format AMSBIB
\Bibitem{Ber13}
\by A.~F.~Ber
\paper Continuous Derivations on $*$-Algebras of $\tau$-Measurable Operators Are Inner
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 5
\pages 658--664
\mathnet{http://mi.mathnet.ru/mzm10231}
\crossref{https://doi.org/10.4213/mzm10231}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206015}
\zmath{https://zbmath.org/?q=an:06198906}
\elib{https://elibrary.ru/item.asp?id=20731723}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 5
\pages 654--659
\crossref{https://doi.org/10.1134/S0001434613050027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321274300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879762634}
Linking options:
  • https://www.mathnet.ru/eng/mzm10231
  • https://doi.org/10.4213/mzm10231
  • https://www.mathnet.ru/eng/mzm/v93/i5/p658
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:497
    Full-text PDF :182
    References:63
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024