Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 4, Pages 588–595
DOI: https://doi.org/10.4213/mzm10228
(Mi mzm10228)
 

This article is cited in 2 scientific papers (total in 2 papers)

The Linearity Coefficient of Metric Projections onto One-Dimensional Chebyshev Subspaces of the Space $C$

K. V. Chesnokova

M. V. Lomonosov Moscow State University
Full-text PDF (406 kB) Citations (2)
References:
Abstract: The paper deals with the operator of metric projection onto an arbitrary one-dimensional Chebyshev subspace $\langle\varphi\rangle$ of the space $C[K]$ of real-valued functions defined and continuous on a Hausdorff compact set $K$. The linearity coefficient of the operator is calculated in terms of the parameters of the generating function $\varphi$. As a consequence, a new estimate of the Lipschitz constant of the operator is obtained.
Keywords: metric projection operator, Chebyshev subspace, Hausdorff compact set $K$, Lipschitz constant of an operator, Lipschitz condition, Banach space.
Received: 20.11.2012
Revised: 19.11.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 4, Pages 556–562
DOI: https://doi.org/10.1134/S0001434614090302
Bibliographic databases:
Document Type: Article
UDC: 517.982.256
Language: Russian
Citation: K. V. Chesnokova, “The Linearity Coefficient of Metric Projections onto One-Dimensional Chebyshev Subspaces of the Space $C$”, Mat. Zametki, 96:4 (2014), 588–595; Math. Notes, 96:4 (2014), 556–562
Citation in format AMSBIB
\Bibitem{Che14}
\by K.~V.~Chesnokova
\paper The Linearity Coefficient of Metric Projections onto One-Dimensional Chebyshev Subspaces of the Space~$C$
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 4
\pages 588--595
\mathnet{http://mi.mathnet.ru/mzm10228}
\crossref{https://doi.org/10.4213/mzm10228}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344332}
\zmath{https://zbmath.org/?q=an:06435021}
\elib{https://elibrary.ru/item.asp?id=22834423}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 4
\pages 556--562
\crossref{https://doi.org/10.1134/S0001434614090302}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344334500030}
\elib{https://elibrary.ru/item.asp?id=24945639}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920179542}
Linking options:
  • https://www.mathnet.ru/eng/mzm10228
  • https://doi.org/10.4213/mzm10228
  • https://www.mathnet.ru/eng/mzm/v96/i4/p588
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:367
    Full-text PDF :116
    References:56
    First page:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024