Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 95, Issue 2, Pages 234–247
DOI: https://doi.org/10.4213/mzm10223
(Mi mzm10223)
 

This article is cited in 4 scientific papers (total in 4 papers)

Isometric Embeddings of Locally Euclidean Metrics in $\mathbb R^3$ as Conical Surfaces

S. N. Mikhalev, I. Kh. Sabitov

M. V. Lomonosov Moscow State University
Full-text PDF (599 kB) Citations (4)
References:
Abstract: It is proved that if a domain with a locally Euclidean metric can be isometrically immersed in the Euclidean plane $\mathbb R^2$ with the standard metric, then it can be isometrically embedded in $\mathbb R^3$ as a conical surface whose projection on a sphere centered at the vertex of the cone is a self-avoiding planar graph with sufficiently smooth edges of specially selected lengths.
Keywords: locally Euclidean metric, isometric embedding, isometric immersion, conical surface, planar graph.
Received: 29.12.2012
English version:
Mathematical Notes, 2014, Volume 95, Issue 2, Pages 214–225
DOI: https://doi.org/10.1134/S0001434614010234
Bibliographic databases:
Document Type: Article
UDC: 519.173
Language: Russian
Citation: S. N. Mikhalev, I. Kh. Sabitov, “Isometric Embeddings of Locally Euclidean Metrics in $\mathbb R^3$ as Conical Surfaces”, Mat. Zametki, 95:2 (2014), 234–247; Math. Notes, 95:2 (2014), 214–225
Citation in format AMSBIB
\Bibitem{MikSab14}
\by S.~N.~Mikhalev, I.~Kh.~Sabitov
\paper Isometric Embeddings of Locally Euclidean Metrics in~$\mathbb R^3$ as Conical Surfaces
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 2
\pages 234--247
\mathnet{http://mi.mathnet.ru/mzm10223}
\crossref{https://doi.org/10.4213/mzm10223}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584444}
\elib{https://elibrary.ru/item.asp?id=21276975}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 2
\pages 214--225
\crossref{https://doi.org/10.1134/S0001434614010234}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335457200023}
\elib{https://elibrary.ru/item.asp?id=21866852}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894789160}
Linking options:
  • https://www.mathnet.ru/eng/mzm10223
  • https://doi.org/10.4213/mzm10223
  • https://www.mathnet.ru/eng/mzm/v95/i2/p234
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024