Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 98, Issue 4, Pages 544–556
DOI: https://doi.org/10.4213/mzm10208
(Mi mzm10208)
 

This article is cited in 2 scientific papers (total in 2 papers)

Automorphisms of Riemann–Cartan Manifolds

V. I. Panzhenskij

Penza State University
Full-text PDF (511 kB) Citations (2)
References:
Abstract: It is proved that the maximal dimension of the Lie group of automorphisms of an $n$-dimensional Riemann–Cartan manifold (space) $(M^{n},g,\widetilde{\nabla})$ equals ${n(n-1)}/2+1$ for $n>4$ and, if the connection $\widetilde{\nabla}$ is semisymmetric, for $n\geqslant2$. If $n=3$, then the maximal dimension of the group equals 6. Three-dimensional Riemann–Cartan spaces $(M^{3},g,\widetilde{\nabla})$ with automorphism group of maximal dimension are studied: the torsion $s$ and the curvature $\widetilde{k}$ are introduced, and it is proved that $s$ and $\widetilde{k}$ are characteristic constants of the space and $\widetilde{k}=k-s^{2}$, where $k$ is the sectional curvature of the Riemannian space $(M^{3},g)$; a geometric interpretation of torsion is given. For Riemann–Cartan spaces with antisymmetric connection, the notion of torsion at a given point in a given three-dimensional direction is introduced.
Keywords: Riemann–Cartan manifold, Lie group of automorphisms, automorphism group of maximal dimension, torsion, curvature.
Received: 23.10.2012
Revised: 10.03.2015
English version:
Mathematical Notes, 2015, Volume 98, Issue 4, Pages 613–623
DOI: https://doi.org/10.1134/S000143461509028X
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: V. I. Panzhenskij, “Automorphisms of Riemann–Cartan Manifolds”, Mat. Zametki, 98:4 (2015), 544–556; Math. Notes, 98:4 (2015), 613–623
Citation in format AMSBIB
\Bibitem{Pan15}
\by V.~I.~Panzhenskij
\paper Automorphisms of Riemann--Cartan Manifolds
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 4
\pages 544--556
\mathnet{http://mi.mathnet.ru/mzm10208}
\crossref{https://doi.org/10.4213/mzm10208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438511}
\elib{https://elibrary.ru/item.asp?id=24850162}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 4
\pages 613--623
\crossref{https://doi.org/10.1134/S000143461509028X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363520200028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944875882}
Linking options:
  • https://www.mathnet.ru/eng/mzm10208
  • https://doi.org/10.4213/mzm10208
  • https://www.mathnet.ru/eng/mzm/v98/i4/p544
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:296
    Full-text PDF :143
    References:43
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024