|
This article is cited in 2 scientific papers (total in 2 papers)
Short Sums with a Noninteger Power of a Natural Number
P. Z. Rakhmonov M. V. Lomonosov Moscow State University
Abstract:
We establish a nontrivial estimate for a short trigonometric sum of the form $\sum_{x-y<n\le x}e(\alpha [n^c])$, where $y\ge \sqrt{2cx}\,{\mathscr L}^A$, $A\ge 1$ is a fixed number, ${\mathscr L}=\ln x$, and $c$ is a noninteger satisfying the conditions
$$
1<c\le \log_2{\mathscr L}-\log_2 \ln {\mathscr L}^{6A},\qquad
\|c\|\ge(2^{[c]+1}-1)(A+1){\mathscr L}^{-1}\ln{\mathscr L}.
$$
Keywords:
short trigonometric sum, estimate of a trigonometric sum, Fourier series, Stirling's formula.
Received: 03.09.2012
Citation:
P. Z. Rakhmonov, “Short Sums with a Noninteger Power of a Natural Number”, Mat. Zametki, 95:5 (2014), 763–774; Math. Notes, 95:5 (2014), 697–707
Linking options:
https://www.mathnet.ru/eng/mzm10205https://doi.org/10.4213/mzm10205 https://www.mathnet.ru/eng/mzm/v95/i5/p763
|
Statistics & downloads: |
Abstract page: | 400 | Full-text PDF : | 189 | References: | 41 | First page: | 9 |
|