Abstract:
We prove an asymptotic formula for the number of representations of a sufficiently large natural number N as the sum of two primes p1 and p2 and the cube of a natural number m satisfying the conditions |pi−N/3|⩽H, |m3−N/3|⩽H, H⩾N5/6L10.
Citation:
Z. Kh. Rakhmonov, “The Estermann Cubic Problem with Almost Equal Summands”, Mat. Zametki, 95:3 (2014), 445–456; Math. Notes, 95:3 (2014), 407–417
This publication is cited in the following 6 articles:
Z. Kh. Rakhmonov, F. Z. Rakhmonov, “Asimptoticheskaya formula v probleme Varinga s pochti proportsionalnymi slagaemymi”, Chebyshevskii sb., 25:2 (2024), 139–168
Z. Kh. Rakhmonov, “Obobschenie problemy Varinga dlya devyati pochti proportsionalnykh kubov”, Chebyshevskii sb., 24:3 (2023), 71–94
Z. Kh. Rakhmonov, I. Allakov, B. Kh. Abraev, “Obobschenie ternarnoi problemy Goldbakha s pochti ravnymi slagaemymi”, Chebyshevskii sb., 24:4 (2023), 264–298
P. Z. Rakhmonov, “The Generalized Estermann Ternary Problem for Noninteger Powers with Almost Equal Summands”, Math. Notes, 100:3 (2016), 438–447
Z. Kh. Rakhmonov, N. N. Nazrublloev, A. O. Rakhimov, “Korotkie summy G. Veilya i ikh prilozheniya”, Chebyshevskii sb., 16:1 (2015), 232–247
P. Z. Rakhmonov, “Obobschennaya ternarnaya problema Estermana dlya netselykh stepenei s pochti ravnymi slagaemymi”, Chebyshevskii sb., 16:1 (2015), 248–253