Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 95, Issue 3, Pages 445–456
DOI: https://doi.org/10.4213/mzm10204
(Mi mzm10204)
 

This article is cited in 6 scientific papers (total in 6 papers)

The Estermann Cubic Problem with Almost Equal Summands

Z. Kh. Rakhmonov

Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe
Full-text PDF (514 kB) Citations (6)
References:
Abstract: We prove an asymptotic formula for the number of representations of a sufficiently large natural number N as the sum of two primes p1 and p2 and the cube of a natural number m satisfying the conditions |piN/3|H, |m3N/3|H, HN5/6L10.
Keywords: Estermann cubic problem, prime, Weyl sum, Hua estimate, rational trigonometric sum, Poisson summation formula.
Received: 11.10.2012
English version:
Mathematical Notes, 2014, Volume 95, Issue 3, Pages 407–417
DOI: https://doi.org/10.1134/S0001434614030122
Bibliographic databases:
Document Type: Article
UDC: 511.24
Language: Russian
Citation: Z. Kh. Rakhmonov, “The Estermann Cubic Problem with Almost Equal Summands”, Mat. Zametki, 95:3 (2014), 445–456; Math. Notes, 95:3 (2014), 407–417
Citation in format AMSBIB
\Bibitem{Rak14}
\by Z.~Kh.~Rakhmonov
\paper The Estermann Cubic Problem with Almost Equal Summands
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 3
\pages 445--456
\mathnet{http://mi.mathnet.ru/mzm10204}
\crossref{https://doi.org/10.4213/mzm10204}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3409994}
\elib{https://elibrary.ru/item.asp?id=21276994}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 3
\pages 407--417
\crossref{https://doi.org/10.1134/S0001434614030122}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335457300012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899699461}
Linking options:
  • https://www.mathnet.ru/eng/mzm10204
  • https://doi.org/10.4213/mzm10204
  • https://www.mathnet.ru/eng/mzm/v95/i3/p445
  • This publication is cited in the following 6 articles:
    1. Z. Kh. Rakhmonov, F. Z. Rakhmonov, “Asimptoticheskaya formula v probleme Varinga s pochti proportsionalnymi slagaemymi”, Chebyshevskii sb., 25:2 (2024), 139–168  mathnet  crossref
    2. Z. Kh. Rakhmonov, “Obobschenie problemy Varinga dlya devyati pochti proportsionalnykh kubov”, Chebyshevskii sb., 24:3 (2023), 71–94  mathnet  crossref
    3. Z. Kh. Rakhmonov, I. Allakov, B. Kh. Abraev, “Obobschenie ternarnoi problemy Goldbakha s pochti ravnymi slagaemymi”, Chebyshevskii sb., 24:4 (2023), 264–298  mathnet  crossref
    4. P. Z. Rakhmonov, “The Generalized Estermann Ternary Problem for Noninteger Powers with Almost Equal Summands”, Math. Notes, 100:3 (2016), 438–447  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Z. Kh. Rakhmonov, N. N. Nazrublloev, A. O. Rakhimov, “Korotkie summy G. Veilya i ikh prilozheniya”, Chebyshevskii sb., 16:1 (2015), 232–247  mathnet  elib
    6. P. Z. Rakhmonov, “Obobschennaya ternarnaya problema Estermana dlya netselykh stepenei s pochti ravnymi slagaemymi”, Chebyshevskii sb., 16:1 (2015), 248–253  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:472
    Full-text PDF :191
    References:81
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025