Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 95, Issue 1, Pages 26–36
DOI: https://doi.org/10.4213/mzm10197
(Mi mzm10197)
 

Localization for Multiple Fourier Series with "$J_k$-Lacunary Sequence of Partial Sums" in Orlicz Classes

I. L. Bloshanskii, Z. N. Tsukareva

Moscow State Region University
References:
Abstract: We obtain structural and geometric characteristics of sets on which weak generalized localization almost everywhere is valid for multiple trigonometric Fourier series of functions in the classes $L(\log^+L)^{3k+2}(\mathbb T^N)$, $1\le k\le N-2$, $N\ge 3$, in the case where the rectangular partial sums of these series have a “number” in which exactly $k$ components are terms of lacunary sequences.
Keywords: trigonometric Fourier series, lacunary sequence of partial sums, localization for Fourier series, Orlicz class of functions, Lebesgue measure.
Received: 26.11.2012
English version:
Mathematical Notes, 2014, Volume 95, Issue 1, Pages 22–31
DOI: https://doi.org/10.1134/S0001434614010039
Bibliographic databases:
Document Type: Article
UDC: 517.518.475
Language: Russian
Citation: I. L. Bloshanskii, Z. N. Tsukareva, “Localization for Multiple Fourier Series with "$J_k$-Lacunary Sequence of Partial Sums" in Orlicz Classes”, Mat. Zametki, 95:1 (2014), 26–36; Math. Notes, 95:1 (2014), 22–31
Citation in format AMSBIB
\Bibitem{BloTsu14}
\by I.~L.~Bloshanskii, Z.~N.~Tsukareva
\paper Localization for Multiple Fourier Series with ``$J_k$-Lacunary Sequence of Partial Sums'' in Orlicz Classes
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 1
\pages 26--36
\mathnet{http://mi.mathnet.ru/mzm10197}
\crossref{https://doi.org/10.4213/mzm10197}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3267189}
\elib{https://elibrary.ru/item.asp?id=21276957}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 1
\pages 22--31
\crossref{https://doi.org/10.1134/S0001434614010039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335457200003}
\elib{https://elibrary.ru/item.asp?id=21866851}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894788027}
Linking options:
  • https://www.mathnet.ru/eng/mzm10197
  • https://doi.org/10.4213/mzm10197
  • https://www.mathnet.ru/eng/mzm/v95/i1/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024