Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 95, Issue 1, Pages 3–17
DOI: https://doi.org/10.4213/mzm10196
(Mi mzm10196)
 

This article is cited in 11 scientific papers (total in 11 papers)

Kolmogorov-Type Inequalities for Norms of Riesz Derivatives of Functions of Several Variables with Laplacian Bounded in L and Related Problems

V. F. Babenkoa, N. V. Parfinovicha, S. A. Pichugovba

a Dnepropetrovsk National University
b Dnepropetrovsk National University of Railway Transport
References:
Abstract: Let LΔ,(Rm) be the space of functions fL(Rm) such that ΔfL(Rm). We obtain new sharp Kolmogorov-type inequalities for the L-norms of the Riesz derivatives Dαf of the functions fLΔ,(Rm) and solve the Stechkin problem of approximating an unbounded operator Dα by bounded operators on the class fLΔ,(Rm) such that Δf1, and also the problem of the best recovery of the operator Dα from elements of this class given with error δ.
Keywords: Kolmogorov-type inequality, Riesz derivative, Laplacian, Stechkin approximation problem, optimal recovery problem for operators, Banach space.
Received: 10.07.2011
Revised: 21.07.2013
English version:
Mathematical Notes, 2014, Volume 95, Issue 1, Pages 3–14
DOI: https://doi.org/10.1134/S0001434614010015
Bibliographic databases:
Document Type: Article
UDC: 517.982.4
Language: Russian
Citation: V. F. Babenko, N. V. Parfinovich, S. A. Pichugov, “Kolmogorov-Type Inequalities for Norms of Riesz Derivatives of Functions of Several Variables with Laplacian Bounded in L and Related Problems”, Mat. Zametki, 95:1 (2014), 3–17; Math. Notes, 95:1 (2014), 3–14
Citation in format AMSBIB
\Bibitem{BabParPic14}
\by V.~F.~Babenko, N.~V.~Parfinovich, S.~A.~Pichugov
\paper Kolmogorov-Type Inequalities for Norms of Riesz Derivatives of Functions of Several Variables with Laplacian Bounded in~$L_\infty$ and Related Problems
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 1
\pages 3--17
\mathnet{http://mi.mathnet.ru/mzm10196}
\crossref{https://doi.org/10.4213/mzm10196}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3267187}
\elib{https://elibrary.ru/item.asp?id=21276955}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 1
\pages 3--14
\crossref{https://doi.org/10.1134/S0001434614010015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335457200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894869498}
Linking options:
  • https://www.mathnet.ru/eng/mzm10196
  • https://doi.org/10.4213/mzm10196
  • https://www.mathnet.ru/eng/mzm/v95/i1/p3
  • This publication is cited in the following 11 articles:
    1. Oleg Kovalenko, “On a general approach to some problems of approximation of operators”, J Math Sci, 279:1 (2024), 67  crossref
    2. V. V. Arestov, “Variant zadachi Stechkina o nailuchshem priblizhenii operatora differentsirovaniya drobnogo poryadka na osi”, Tr. IMM UrO RAN, 30, no. 4, 2024, 37–54  mathnet  crossref  elib
    3. V. V. Arestov, “A Variant of Stechkin's Problem on the Best Approximation of a Fractional Order Differentiation Operator on the Axis”, Proc. Steklov Inst. Math., 327:S1 (2024), S10  crossref
    4. Oleg Kovalenko, “On a general approach to some problems of approximation of operators”, UMB, 20:4 (2023), 544  crossref
    5. Vladyslav Babenko, Oleg Kovalenko, Nataliia Parfinovych, “On approximation of hypersingular integral operators by bounded ones”, Journal of Mathematical Analysis and Applications, 513:2 (2022), 126215  crossref
    6. Kozynenko O., Skorokhodov D., “Kolmogorov-Type Inequalities For the Norms of Fractional Derivatives of Functions Defined on the Positive Half Line”, Ukr. Math. J., 72:10 (2021), 1579–1594  crossref  mathscinet  isi
    7. Arestov V., “Uniform Approximation of Differentiation Operators By Bounded Linear Operators in the Spacel(R)”, Anal. Math., 46:3 (2020), 425–445  crossref  mathscinet  isi
    8. R. R. Akopyan, “Optimal recovery of a derivative of an analytic function from values of the function given with an error on a part of the boundary”, Anal. Math., 44:1 (2018), 3–19  crossref  mathscinet  zmath  isi  scopus
    9. V. V. Arestov, “Best Uniform Approximation of the Differentiation Operator by Operators Bounded in the Space $L_2$”, Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S9–S30  mathnet  crossref  crossref  isi  elib
    10. Babenko V.F., Parfinovich N.V., “Estimation of the Uniform Norm of One-Dimensional Riesz Potential of the Partial Derivative of a Function with Bounded Laplacian”, Ukr. Math. J., 68:7 (2016), 987–999  crossref  mathscinet  isi  scopus
    11. Babenko V.F. Churilova M.S. Parfinovych N.V. Skorokhodov D.S., “Kolmogorov Type Inequalities For the Marchaud Fractional Derivatives on the Real Line and the Half-Line”, J. Inequal. Appl., 2014, 504  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:724
    Full-text PDF :279
    References:108
    First page:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025