Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 6, Pages 904–920
DOI: https://doi.org/10.4213/mzm10189
(Mi mzm10189)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity

A. S. Serdyuk, I. V. Sokolenko

Institute of Mathematics, Ukrainian National Academy of Sciences
Full-text PDF (574 kB) Citations (2)
References:
Abstract: We obtain asymptotic estimates for best approximations by trigonometric polynomials in the metric of the space $C(L_p)$ for classes of periodic functions expressible as convolutions of kernels $\Psi_\beta$ with Fourier coefficients decreasing to zero faster than any power sequence, and with functions $\varphi\in C$  $(\varphi\in L_p)$ whose moduli of continuity do not exceed the given majorant of $\omega(t)$. It is proved that, in the spaces $C$ and $L_1$, for convex moduli of continuity $\omega(t)$, the obtained estimates are asymptotically sharp.
Keywords: best approximation by trigonometric polynomials, periodic infinitely differentiable function, modulus of continuity, generalized Poisson kernel, linear approximation method, Kolmogorov–Nikol'skii problem.
Received: 30.10.2012
English version:
Mathematical Notes, 2016, Volume 99, Issue 6, Pages 901–915
DOI: https://doi.org/10.1134/S0001434616050291
Bibliographic databases:
Document Type: Article
UDC: 517.518.83
Language: Russian
Citation: A. S. Serdyuk, I. V. Sokolenko, “Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity”, Mat. Zametki, 99:6 (2016), 904–920; Math. Notes, 99:6 (2016), 901–915
Citation in format AMSBIB
\Bibitem{SerSok16}
\by A.~S.~Serdyuk, I.~V.~Sokolenko
\paper Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 6
\pages 904--920
\mathnet{http://mi.mathnet.ru/mzm10189}
\crossref{https://doi.org/10.4213/mzm10189}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507455}
\elib{https://elibrary.ru/item.asp?id=26414314}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 6
\pages 901--915
\crossref{https://doi.org/10.1134/S0001434616050291}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382176900029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977136731}
Linking options:
  • https://www.mathnet.ru/eng/mzm10189
  • https://doi.org/10.4213/mzm10189
  • https://www.mathnet.ru/eng/mzm/v99/i6/p904
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024