Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 4, Pages 529–555
DOI: https://doi.org/10.4213/mzm10176
(Mi mzm10176)
 

This article is cited in 5 scientific papers (total in 5 papers)

Arithmetic Complexity of Certain Linear Transformations

S. B. Gashkov

M. V. Lomonosov Moscow State University
Full-text PDF (641 kB) Citations (5)
References:
Abstract: We obtain order-sharp quadratic and slightly higher estimates of the computational complexity of certain linear transformations (binomial, Stirling, Lah, Gauss, Serpiński, Sylvester) in the basis $\{x+y \}\cup \{ax: \vert a \vert \leq C \}$ consisting of the operations of addition and inner multiplication by a bounded constant as well as upper bounds $O(n\log n)$ for the computational complexity in the basis $\{ax+by: a,b \in {\mathbb R}\}$ consisting of all linear functions. Lower bounds of the form $\Omega(n\log n)$ are obtained for the basis consisting of all monotone linear functions $\{ax+by: a, b > 0\}$. For the finite arithmetic basis $B_{+,*,/} = \{x\pm y,xy,1/x,1\}$ and for the bases $\{x\pm y\} \cup \{nx: n \in {\mathbb N}\}\cup \{x/n: n \in {\mathbb N}\}$ and $B_{+,*}=\{x+y,xy,-1\}$, estimates $O(n \log n \log \log n)$ are obtained in certain cases. In the case of a field of characteristic $p$, computations in the basis $\{x+y \operatorname{mod} p\}$ are also considered.
Keywords: linear transformation (binomial, Stirling, Lah, Gauss, Serpiński, Sylvester), arithmetic computational complexity of linear transformations, finite arithmetic basis, field of characteristic $p$,.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00598
14-01-00671а
This work was supported by the Russian Foundation for Basic Research (grants no. 14-01-00598 and no. 14-01-00671a).
Received: 01.09.2012
Revised: 05.09.2014
English version:
Mathematical Notes, 2015, Volume 97, Issue 4, Pages 531–555
DOI: https://doi.org/10.1134/S0001434615030256
Bibliographic databases:
Document Type: Article
UDC: 519.95
Language: Russian
Citation: S. B. Gashkov, “Arithmetic Complexity of Certain Linear Transformations”, Mat. Zametki, 97:4 (2015), 529–555; Math. Notes, 97:4 (2015), 531–555
Citation in format AMSBIB
\Bibitem{Gas15}
\by S.~B.~Gashkov
\paper Arithmetic Complexity of Certain Linear Transformations
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 4
\pages 529--555
\mathnet{http://mi.mathnet.ru/mzm10176}
\crossref{https://doi.org/10.4213/mzm10176}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370540}
\zmath{https://zbmath.org/?q=an:06455288}
\elib{https://elibrary.ru/item.asp?id=23421542}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 4
\pages 531--555
\crossref{https://doi.org/10.1134/S0001434615030256}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353566800025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928660406}
Linking options:
  • https://www.mathnet.ru/eng/mzm10176
  • https://doi.org/10.4213/mzm10176
  • https://www.mathnet.ru/eng/mzm/v97/i4/p529
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :168
    References:56
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024