Abstract:
Conditions for the existence of almost-periodic solutions of nonlinear almost-periodic difference equations with continuous argument in a Banach space are obtained. These conditions do not involve the H-classes of these equations.
Citation:
V. E. Slyusarchuk, “Conditions for the Existence of Almost-Periodic Solutions of Nonlinear Difference Equations in Banach Space”, Mat. Zametki, 97:2 (2015), 277–285; Math. Notes, 97:2 (2015), 268–274
\Bibitem{Sly15}
\by V.~E.~Slyusarchuk
\paper Conditions for the Existence of Almost-Periodic Solutions of Nonlinear Difference Equations in Banach Space
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 2
\pages 277--285
\mathnet{http://mi.mathnet.ru/mzm10174}
\crossref{https://doi.org/10.4213/mzm10174}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370513}
\zmath{https://zbmath.org/?q=an:06459074}
\elib{https://elibrary.ru/item.asp?id=23421514}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 2
\pages 268--274
\crossref{https://doi.org/10.1134/S0001434615010289}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350557000028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84941625163}
Linking options:
https://www.mathnet.ru/eng/mzm10174
https://doi.org/10.4213/mzm10174
https://www.mathnet.ru/eng/mzm/v97/i2/p277
This publication is cited in the following 8 articles:
V. Yu. Slyusarchuk, “Conditions for the Existence of Solutions of Difference Equations in the Metric Space of Bounded Sequences”, J Math Sci, 278:6 (2024), 1092
M. I. Kamenskii, V. V. Obukhovskii, G. Petrosyan, “On Almost Periodic Trajectories of Control Systems with Feedback in the Form of Sweeping Processes”, Math. Notes, 114:1 (2023), 85–91
V. Yu. Slyusarchuk, “Almost Periodic Solutions of Differential Equations”, J Math Sci, 254:2 (2021), 287
Qu H., Wang L., “Asymptotical Stability and Asymptotic Periodicity For the Lasota-Wazewska Model of Fractional Order With Infinite Delays”, Quaest. Math., 43:8 (2020), 1091–1107
V. Yu. Slyusarchuk, “Representation of Bounded Solutions of Linear Discrete Equations”, J Math Sci, 249:4 (2020), 673
V. Yu. Slyusarchuk, “Favard-Amerio theory for almost periodic functional-differential equations without using the H-classes of those equations”, Ukrainian Math. J., 69:6 (2017), 916–932
V. Yu. Slyusarchuk, “Conditions of Solvability of Functional Equations with Differentiable λ-Injective Operator”, J Math Sci, 226:3 (2017), 296
V. E. Slyusarchuk, “Almost-periodic solutions of discrete equations”, Izv. Math., 80:2 (2016), 403–416