Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 3, Pages 407–412
DOI: https://doi.org/10.4213/mzm10165
(Mi mzm10165)
 

The Complexity of Crossed Products

Ling Liua, Bing-Liang Shenb

a Zhejiang Normal University
b Shanghai University of Finance & Economics, Zhejiang College
References:
Abstract: Let $H$ be a finite-dimensional Hopf algebra, $A$ be a finite-dimensional algebra measured by $H$ and $A\mathbin{\#_\sigma}H$ be a crossed product. In this paper, we first show that if $H$ is semisimple as well as its dual $H^*$, then the complexity of $A\mathbin{\#_\sigma} H$ is equal to that of $A$. Furthermore, we prove that the complexity of a finite-dimensional Hopf algebra $H$ is equal to the complexity of the trivial module $_Hk$. As an application, we prove that the complexity of Sweedler's 4-dimensional Hopf algebra $H_4$ is equal to $1$.
Keywords: crossed product, complexity, trivial module, Sweedler's 4-dimensional Hopf algebra.
Received: 15.06.2011
English version:
Mathematical Notes, 2013, Volume 93, Issue 3, Pages 426–430
DOI: https://doi.org/10.1134/S0001434613030097
Bibliographic databases:
Document Type: Article
UDC: 512.667
Language: Russian
Citation: Ling Liu, Bing-Liang Shen, “The Complexity of Crossed Products”, Mat. Zametki, 93:3 (2013), 407–412; Math. Notes, 93:3 (2013), 426–430
Citation in format AMSBIB
\Bibitem{LinBin13}
\by Ling Liu, Bing-Liang Shen
\paper The Complexity of Crossed Products
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 3
\pages 407--412
\mathnet{http://mi.mathnet.ru/mzm10165}
\crossref{https://doi.org/10.4213/mzm10165}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205988}
\elib{https://elibrary.ru/item.asp?id=20731698}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 3
\pages 426--430
\crossref{https://doi.org/10.1134/S0001434613030097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317986600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876450993}
Linking options:
  • https://www.mathnet.ru/eng/mzm10165
  • https://doi.org/10.4213/mzm10165
  • https://www.mathnet.ru/eng/mzm/v93/i3/p407
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:438
    Full-text PDF :142
    References:35
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024