Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 2, Pages 195–201
DOI: https://doi.org/10.4213/mzm10159
(Mi mzm10159)
 

On the Convergence Rate of a Recursively Defined Sequence

Jong-Yi Chena, Yunshyong Chowb

a National Dong Hwa University, Taiwan
b Institute of Mathematics, Academia Sinica, Taiwan
References:
Abstract: Consider the following recursively defined sequence:
$$ \tau_1 =1,\qquad \sum^n_{j=1} \frac{1}{\sum^n_{s=j}\tau_s}=1\quad \text{for}\quad n\geq 2, $$
which originates from a heat conduction problem first studied by Myshkis (1997). Chang, Chow, and Wang (2003) proved that
$$ \tau_n = \log n +O(1) \qquad \text{for large}\quad n. $$
In this note, we refine this result to
$$ \tau_n= \log n + \gamma+O \biggl(\frac{1}{\log n}\biggr). $$
where $\gamma$ is the Euler constant.
Keywords: difference equation, heat equation, asymptotic behavior, feedback control.
Received: 29.08.2011
English version:
Mathematical Notes, 2013, Volume 93, Issue 2, Pages 238–243
DOI: https://doi.org/10.1134/S0001434613010252
Bibliographic databases:
Document Type: Article
UDC: 519.958
Language: Russian
Citation: Jong-Yi Chen, Yunshyong Chow, “On the Convergence Rate of a Recursively Defined Sequence”, Mat. Zametki, 93:2 (2013), 195–201; Math. Notes, 93:2 (2013), 238–243
Citation in format AMSBIB
\Bibitem{JonYun13}
\by Jong-Yi Chen, Yunshyong Chow
\paper On the Convergence Rate of a Recursively Defined Sequence
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 2
\pages 195--201
\mathnet{http://mi.mathnet.ru/mzm10159}
\crossref{https://doi.org/10.4213/mzm10159}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205965}
\zmath{https://zbmath.org/?q=an:1264.39009}
\elib{https://elibrary.ru/item.asp?id=20731674}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 2
\pages 238--243
\crossref{https://doi.org/10.1134/S0001434613010252}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315582900025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874560819}
Linking options:
  • https://www.mathnet.ru/eng/mzm10159
  • https://doi.org/10.4213/mzm10159
  • https://www.mathnet.ru/eng/mzm/v93/i2/p195
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :153
    References:29
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024