Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2000, Volume 68, Issue 6, Pages 887–897
DOI: https://doi.org/10.4213/mzm1012
(Mi mzm1012)
 

This article is cited in 11 scientific papers (total in 11 papers)

On the Complexity Functions for $T$-Ideals of Associative Algebras

V. M. Petrogradsky

Ulyanovsk State University
References:
Abstract: Let $c_n(\mathbf V)$ be the sequence of codimension growth for a variety $\mathbf V$ of associative algebras. We study the complexity function $\mathscr C(\mathbf V,z)=\sum_{n=0}^\infty c_n(\mathbf V)z^n/n!$, which is the exponential generating function for the sequence of codimensions. Earlier, the complexity functions were used to study varieties of Lie algebras. The objective of the note is to start the systematic investigation of complexity functions in the associative case. These functions turn out to be a useful tool to study the growth of varieties over a field of arbitrary characteristic. In the present note, the Schreier formula for the complexity functions of one-sided ideals of a free associative algebra is found. This formula is applied to the study of products of $T$-ideals. An exact formula is obtained for the complexity function of the variety $\mathbf U_c$ of associative algebras generated by the algebra of upper triangular matrices, and it is proved that the function $c_n(\mathbf U_c)$ is a quasi-polynomial. The complexity functions for proper identities are investigated. The results for the complexity functions are applied to study the asymptotics of codimension growth. Analogies between the complexity functions of varieties and the Hilbert–Poincaré series of finitely generated algebras are traced.
Received: 07.05.1999
English version:
Mathematical Notes, 2000, Volume 68, Issue 6, Pages 751–759
DOI: https://doi.org/10.1023/A:1026612817194
Bibliographic databases:
UDC: 512.55
Language: Russian
Citation: V. M. Petrogradsky, “On the Complexity Functions for $T$-Ideals of Associative Algebras”, Mat. Zametki, 68:6 (2000), 887–897; Math. Notes, 68:6 (2000), 751–759
Citation in format AMSBIB
\Bibitem{Pet00}
\by V.~M.~Petrogradsky
\paper On the Complexity Functions for $T$-Ideals of Associative Algebras
\jour Mat. Zametki
\yr 2000
\vol 68
\issue 6
\pages 887--897
\mathnet{http://mi.mathnet.ru/mzm1012}
\crossref{https://doi.org/10.4213/mzm1012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1835188}
\zmath{https://zbmath.org/?q=an:1010.16021}
\elib{https://elibrary.ru/item.asp?id=5021429}
\transl
\jour Math. Notes
\yr 2000
\vol 68
\issue 6
\pages 751--759
\crossref{https://doi.org/10.1023/A:1026612817194}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166684000028}
Linking options:
  • https://www.mathnet.ru/eng/mzm1012
  • https://doi.org/10.4213/mzm1012
  • https://www.mathnet.ru/eng/mzm/v68/i6/p887
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:466
    Full-text PDF :220
    References:82
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024