Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 1, Pages 130–150
DOI: https://doi.org/10.4213/mzm10105
(Mi mzm10105)
 

This article is cited in 10 scientific papers (total in 10 papers)

Approximations of the Resolvent for a Non–Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients

S. E. Pastukhova

Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
References:
Abstract: A strongly inhomogeneous diffusion operator with drift depending on a small parameter $\varepsilon$ is studied in the space $L^2(\mathbb R^n)$. The strong inhomogeneity consists in that the coefficients of the operator are $\varepsilon$-periodic and, in addition, the drift vector is of the order of $\varepsilon^{-1}$. As $\varepsilon\to 0$, approximations in the operator $L^2$‑norm of order $\varepsilon$ and $\varepsilon^2$ are constructed for the resolvent of the operator. For each of these orders of approximation, an averaged diffusion operator is obtained. A spectral method based on the Bloch representation for an operator with periodic coefficients is used.
Keywords: diffusion operator with drift, resolvent of an operator, averaged diffusion operator, Bloch representation for an operator, Sobolev space, Gelfand transformation.
Received: 23.07.2012
English version:
Mathematical Notes, 2013, Volume 94, Issue 1, Pages 127–145
DOI: https://doi.org/10.1134/S0001434613070122
Bibliographic databases:
Document Type: Article
UDC: 517.956.8
Language: Russian
Citation: S. E. Pastukhova, “Approximations of the Resolvent for a Non–Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients”, Mat. Zametki, 94:1 (2013), 130–150; Math. Notes, 94:1 (2013), 127–145
Citation in format AMSBIB
\Bibitem{Pas13}
\by S.~E.~Pastukhova
\paper Approximations of the Resolvent for a Non--Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 1
\pages 130--150
\mathnet{http://mi.mathnet.ru/mzm10105}
\crossref{https://doi.org/10.4213/mzm10105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206074}
\zmath{https://zbmath.org/?q=an:06228535}
\elib{https://elibrary.ru/item.asp?id=20731763}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 1
\pages 127--145
\crossref{https://doi.org/10.1134/S0001434613070122}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323665000012}
\elib{https://elibrary.ru/item.asp?id=20456014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883388590}
Linking options:
  • https://www.mathnet.ru/eng/mzm10105
  • https://doi.org/10.4213/mzm10105
  • https://www.mathnet.ru/eng/mzm/v94/i1/p130
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:613
    Full-text PDF :217
    References:91
    First page:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024