Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 76, Issue 2, Pages 216–225
DOI: https://doi.org/10.4213/mzm101
(Mi mzm101)
 

Best Uniform Rational Approximations of Functions by Orthoprojections

A. A. Pekarskii

Belarusian State Technological University
References:
Abstract: Let $C[-1,1]$ be the Banach space of continuous complex functions $f$ on the interval $[-1,1]$ equipped with the standard maximum norm $\|f\|$; let $\omega(\,\cdot\,)=\omega(\,\cdot\,,f$ be the modulus of continuity of $f$; and let $R_n=R_n(f)$ be the best uniform approximation of $f$ by rational functions (r.f.) whose degrees do not exceed $n=1,2,\ldots$. The space $C[-1,1]$ is also regarded as a pre-Hilbert space with respect to the inner product given by $(f,g)=(1/\pi)\int_{-1}^1f(x)g(x)(1-x^2)^{-1/2}\,dx$. Let $z_n=\{z_1,z_2,\ldots,z_n\}$ be a set of points located outside the interval $[-1,1]$. By $F(\,\cdot\,,f,z_n)$ we denote an orthoprojection operator acting from the pre-Hilbert space $C[-1,1]$ onto its $(n+1)$-dimensional subspace consisting of rational functions whose poles (with multiplicity taken into account) can only be points of the set $z_n$. In this paper, we show that if $f$ is not a rational function of degree $\leqslant n$, then we can find a set of points $z_n=z_n(f)$ such that $\|f(\,\cdot\,)-F(\,\cdot\,,f,z_n)\|\leqslant 12R_n\ln\frac3{\omega^{-1}(R_n/3)}$.
Received: 06.05.2002
English version:
Mathematical Notes, 2004, Volume 76, Issue 2, Pages 200–208
DOI: https://doi.org/10.1023/B:MATN.0000036758.61603.90
Bibliographic databases:
UDC: 517.53
Language: Russian
Citation: A. A. Pekarskii, “Best Uniform Rational Approximations of Functions by Orthoprojections”, Mat. Zametki, 76:2 (2004), 216–225; Math. Notes, 76:2 (2004), 200–208
Citation in format AMSBIB
\Bibitem{Pek04}
\by A.~A.~Pekarskii
\paper Best Uniform Rational Approximations of Functions by Orthoprojections
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 2
\pages 216--225
\mathnet{http://mi.mathnet.ru/mzm101}
\crossref{https://doi.org/10.4213/mzm101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2098993}
\zmath{https://zbmath.org/?q=an:1059.41013}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 2
\pages 200--208
\crossref{https://doi.org/10.1023/B:MATN.0000036758.61603.90}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000223760500023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-4043154810}
Linking options:
  • https://www.mathnet.ru/eng/mzm101
  • https://doi.org/10.4213/mzm101
  • https://www.mathnet.ru/eng/mzm/v76/i2/p216
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024