Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2000, Volume 68, Issue 6, Pages 830–841
DOI: https://doi.org/10.4213/mzm1005
(Mi mzm1005)
 

This article is cited in 3 scientific papers (total in 3 papers)

A Method of Deducing LL-Polyhedra for nn-Lattices

E. P. Baranovskii, P. G. Kononenko

Ivanovo State University
Full-text PDF (205 kB) Citations (3)
References:
Abstract: We suggest a method for selecting an LL-simplex in an LL-polyhedron of an nn-lattice in Euclidean space. By taking into account the specific form of the condition that a simplex in the lattice is an LL-simplex and by considering a simplex selected from an LL-polyhedron, we present a new method for describing all types of LL-polyhedra in lattices of given dimension nn. We apply the method to deduce all types of LL-polyhedra in nn-dimensional lattices for n=2,3,4n=2,3,4, which are already known from previous results.
Received: 16.04.1998
English version:
Mathematical Notes, 2000, Volume 68, Issue 6, Pages 704–712
DOI: https://doi.org/10.1023/A:1026648330397
Bibliographic databases:
UDC: 514.17
Language: Russian
Citation: E. P. Baranovskii, P. G. Kononenko, “A Method of Deducing LL-Polyhedra for nn-Lattices”, Mat. Zametki, 68:6 (2000), 830–841; Math. Notes, 68:6 (2000), 704–712
Citation in format AMSBIB
\Bibitem{BarKon00}
\by E.~P.~Baranovskii, P.~G.~Kononenko
\paper A Method of Deducing $L$-Polyhedra for $n$-Lattices
\jour Mat. Zametki
\yr 2000
\vol 68
\issue 6
\pages 830--841
\mathnet{http://mi.mathnet.ru/mzm1005}
\crossref{https://doi.org/10.4213/mzm1005}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1835181}
\zmath{https://zbmath.org/?q=an:1008.52014}
\elib{https://elibrary.ru/item.asp?id=5021422}
\transl
\jour Math. Notes
\yr 2000
\vol 68
\issue 6
\pages 704--712
\crossref{https://doi.org/10.1023/A:1026648330397}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166684000021}
Linking options:
  • https://www.mathnet.ru/eng/mzm1005
  • https://doi.org/10.4213/mzm1005
  • https://www.mathnet.ru/eng/mzm/v68/i6/p830
  • This publication is cited in the following 3 articles:
    1. Dutour, M, “The six-dimensional Delaunay polytopes”, European Journal of Combinatorics, 25:4 (2004), 535  crossref  mathscinet  zmath  isi  scopus  scopus
    2. Deza, M, “The hypermetric cone on seven vertices”, Experimental Mathematics, 12:4 (2003), 433  crossref  mathscinet  zmath  isi  scopus  scopus
    3. P. G. Kononenko, “Affine Types of LL-Polyhedra for 5-lattices”, Math. Notes, 71:3 (2002), 374–391  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:404
    Full-text PDF :206
    References:66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025