Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2000, Volume 68, Issue 6, Pages 803–818
DOI: https://doi.org/10.4213/mzm1003
(Mi mzm1003)
 

This article is cited in 6 scientific papers (total in 6 papers)

Hilbert Module Realization of the Square of White Noise and Finite Difference Algebras

L. Accardia, M. Skeideb

a Università degli Studi Roma Tre, Department of Mathematics
b Brandenburgische Technische Universität
Full-text PDF (292 kB) Citations (6)
References:
Abstract: We develop an approach to the representations theory of the algebra of the square of white noise based on the construction of Hilbert modules. We find the unique Fock representation and show that the representation space is the usual symmetric Fock space. Although we started with one degree of freedom we end up with countably many degrees of freedom. Surprisingly, our representation turns out to have a close relation to Feinsilver's finite difference algebra. In fact, there exists a holomorphic image of the finite difference algebra in the algebra of square of white noise. Our representation restricted to this image is the Boukas representation on the finite difference Fock space. Thus we extend the Boukas representation to a bigger algebra, which is generated by creators, annihilators, and number operators.
Received: 09.10.1999
English version:
Mathematical Notes, 2000, Volume 68, Issue 6, Pages 683–694
DOI: https://doi.org/10.1023/A:1026644229489
Bibliographic databases:
UDC: 517
Language: Russian
Citation: L. Accardi, M. Skeide, “Hilbert Module Realization of the Square of White Noise and Finite Difference Algebras”, Mat. Zametki, 68:6 (2000), 803–818; Math. Notes, 68:6 (2000), 683–694
Citation in format AMSBIB
\Bibitem{AccSke00}
\by L.~Accardi, M.~Skeide
\paper Hilbert Module Realization of the Square of White Noise and Finite Difference Algebras
\jour Mat. Zametki
\yr 2000
\vol 68
\issue 6
\pages 803--818
\mathnet{http://mi.mathnet.ru/mzm1003}
\crossref{https://doi.org/10.4213/mzm1003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1835179}
\zmath{https://zbmath.org/?q=an:1029.46120}
\transl
\jour Math. Notes
\yr 2000
\vol 68
\issue 6
\pages 683--694
\crossref{https://doi.org/10.1023/A:1026644229489}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166684000019}
Linking options:
  • https://www.mathnet.ru/eng/mzm1003
  • https://doi.org/10.4213/mzm1003
  • https://www.mathnet.ru/eng/mzm/v68/i6/p803
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :197
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024