Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 1, Pages 3–12
DOI: https://doi.org/10.4213/mzm1
(Mi mzm1)
 

This article is cited in 2 scientific papers (total in 2 papers)

On Carleman–Vekua Equations with Nonfinitely Supported Coefficients on a Noncompact Riemann Surface

I. A. Bikchantaev

Kazan State University
Full-text PDF (217 kB) Citations (2)
References:
Abstract: In this paper, we study equations of the form $\partial f+Af+B\bar f=G$, on an arbitrary noncompact Riemann surface $R$, where $A$, $B$, and $G$ are given square-integrable linear differentials of genus $(0,1)$ satisfying certain additional conditions. Necessary and sufficient conditions for the solvability of the above equation are proved for the class of functions with $\Lambda_0$-behavior in the neighborhood of the ideal boundary of the surface $R$; the index of the equation is also calculated.
Received: 08.07.2002
English version:
Mathematical Notes, 2004, Volume 75, Issue 1, Pages 3–12
DOI: https://doi.org/10.1023/B:MATN.0000015016.37815.22
Bibliographic databases:
UDC: 517.968.25+517.54
Language: Russian
Citation: I. A. Bikchantaev, “On Carleman–Vekua Equations with Nonfinitely Supported Coefficients on a Noncompact Riemann Surface”, Mat. Zametki, 75:1 (2004), 3–12; Math. Notes, 75:1 (2004), 3–12
Citation in format AMSBIB
\Bibitem{Bik04}
\by I.~A.~Bikchantaev
\paper On Carleman--Vekua Equations with Nonfinitely Supported Coefficients on a Noncompact Riemann Surface
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 1
\pages 3--12
\mathnet{http://mi.mathnet.ru/mzm1}
\crossref{https://doi.org/10.4213/mzm1}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2053144}
\zmath{https://zbmath.org/?q=an:1126.30319}
\elib{https://elibrary.ru/item.asp?id=5976282}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 1
\pages 3--12
\crossref{https://doi.org/10.1023/B:MATN.0000015016.37815.22}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220006100001}
Linking options:
  • https://www.mathnet.ru/eng/mzm1
  • https://doi.org/10.4213/mzm1
  • https://www.mathnet.ru/eng/mzm/v75/i1/p3
  • This publication is cited in the following 2 articles:
    1. Rikchentaev A.M., “Local Convergence in Measure on Semifinite Von Neumann Algebras. III”, Hot Topics in Operator Theory, Conference Proceedings, eds. Douglas R., Esterle J., Gaspar D., Timotin D., Vasilescu F., Theta Foundation, 2008, 1–12  mathscinet  isi
    2. Bikchantaev, IA, “The R-linear conjugation problem for the Carleman-Vekua equation on an open Riemann surface”, Differential Equations, 43:2 (2007), 280  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:480
    Full-text PDF :203
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025