|
This article is cited in 1 scientific paper (total in 1 paper)
Structurally equivalent tuples in the equiprobable polynomial scheme
A. M. Shoitov Academy of Cryptography of the Russian Federation, Moscow
Abstract:
Let $X_1,\dots,X_n$ be a sequence of independent random variables with the uniform distribution on the set $\{1,\dots,N\}$. We describe limit discrete distributions of the number of $k$-element sets consisting of structurally equivalent $s$-tuples for $N,n,s\to\infty$, $sN^{-1}\to\alpha\in(0,1)$, $n(N)_sN^{-s}\to\lambda\in(0,\infty)$ and arbitrary $k\geqslant2$. The proofs are based on the Chen–Stein method.
Key words:
sequences of independent trials, equiprobable polynomial scheme, structurally equivalent s-tuples, Chen–Stein method.
Received 20.V.2011
Citation:
A. M. Shoitov, “Structurally equivalent tuples in the equiprobable polynomial scheme”, Mat. Vopr. Kriptogr., 3:3 (2012), 129–151
Linking options:
https://www.mathnet.ru/eng/mvk64https://doi.org/10.4213/mvk64 https://www.mathnet.ru/eng/mvk/v3/i3/p129
|
Statistics & downloads: |
Abstract page: | 473 | Full-text PDF : | 241 | References: | 62 |
|