Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2023, Volume 14, Issue 4, Pages 111–142
DOI: https://doi.org/10.4213/mvk458
(Mi mvk458)
 

This article is cited in 1 scientific paper (total in 1 paper)

Multipermutations on the Cartesian product of groups and their properties

B. A. Pogorelova, M. A. Pudovkinab

a Academy of Cryptography of the Russian Federation, Moscow
b National Research Nuclear University (MEPhI)
Full-text PDF (533 kB) Citations (1)
References:
Abstract: Multipermutations are introduced by C.-P. Schnorr and S. Vaudenay as formalization of perfect diffusion in block ciphers. In this paper, we consider a group $X$ and a set $H$ of transformations on $X^2$ introduced by S. Vaudenay. Any bijective transformation from $H$ is a multipermutation. Multipermutations from $H$ are defined by orthomorphisms and complete mappings on $X$. For a set $W$ of distinct cosets of a normal subgroup $W_{0}$ in $X$, we provide multipermutations from $H$ such that they perfectly diffuse one of partitions $W^2$ or $X \times W$. As an example, we prove that Feistel-like involutions on $X$, which are components of the CS-cipher encryption function, perfectly diffuse $X \times W$ for any subgroup $W_{0}$.
Key words: multipermutation, orthomorphism, complete mapping, Quasi-Hadamard transformation, perfect diffusion of partitions, CS-cipher.
Received 18.V.2023
Document Type: Article
UDC: 519.542.74+519.719.2
Language: Russian
Citation: B. A. Pogorelov, M. A. Pudovkina, “Multipermutations on the Cartesian product of groups and their properties”, Mat. Vopr. Kriptogr., 14:4 (2023), 111–142
Citation in format AMSBIB
\Bibitem{PogPud23}
\by B.~A.~Pogorelov, M.~A.~Pudovkina
\paper Multipermutations on the Cartesian product of groups and their properties
\jour Mat. Vopr. Kriptogr.
\yr 2023
\vol 14
\issue 4
\pages 111--142
\mathnet{http://mi.mathnet.ru/mvk458}
\crossref{https://doi.org/10.4213/mvk458}
Linking options:
  • https://www.mathnet.ru/eng/mvk458
  • https://doi.org/10.4213/mvk458
  • https://www.mathnet.ru/eng/mvk/v14/i4/p111
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:152
    Full-text PDF :25
    References:22
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024