Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2023, Volume 14, Issue 2, Pages 97–110
DOI: https://doi.org/10.4213/mvk440
(Mi mvk440)
 

Two Lempel – Ziv goodness-of-fit tests for nonequiprobable random binary sequences

V. I. Kruglov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: Let the hypothesis $H_p$ mean that elements of the sequence $X_1,\ldots,X_n$ are independent and identically distributed: $\mathbf{P}\{X_i=1\}=p$, $\mathbf{P}\{X_i=0\}=1-p$, where $p\in(0,1)$. Earlier two goodness-of-fit tests for the hypothesis $H_{0.5}$ were proposed based on the possibility of exact computation of Lempel – Ziv statistics distributions. In this paper these tests are generalized for any $p\in(0,1)$. For each test a sequence of length $n=mrT$ is divided into blocks of length $T$, for these blocks Lempel – Ziv statistics $W_1(T),\ldots, W_{mr}(T)$ are computed. The first test for $r=2$ is based on the statistic $\tilde W(2mT)=(W_1+\ldots+W_m)-(W_{m+1}+\ldots+W_{2m})$, its distribution is symmetric about zero. The statistic of the second test is $\tilde \chi^2(mrT)=\max_{1\le k\le m} \chi_{(k)}^2(T)$, where $\chi_{(1)}^2(T),\ldots,\chi_{(m)}^2(T)$ are values of chi-square statistics computed for $(W_{1,1}(T),\ldots, W_{1,r}(T)),\ldots,(W_{m,1}(T), W_{m,2}(T), \ldots, W_{m,r}(T))$ correspondingly. For statistics of both tests limit distributions are found, for the statistic of the first test the rate of convergence to the limit normal distribution is given.
Key words: Lempel – Ziv test, RNG testing, statistical test, computation of distributions.
Received 02.IX.2022
Bibliographic databases:
Document Type: Article
UDC: 519.233.3
Language: English
Citation: V. I. Kruglov, “Two Lempel – Ziv goodness-of-fit tests for nonequiprobable random binary sequences”, Mat. Vopr. Kriptogr., 14:2 (2023), 97–110
Citation in format AMSBIB
\Bibitem{Kru23}
\by V.~I.~Kruglov
\paper Two Lempel -- Ziv goodness-of-fit tests for nonequiprobable random binary sequences
\jour Mat. Vopr. Kriptogr.
\yr 2023
\vol 14
\issue 2
\pages 97--110
\mathnet{http://mi.mathnet.ru/mvk440}
\crossref{https://doi.org/10.4213/mvk440}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4636048}
Linking options:
  • https://www.mathnet.ru/eng/mvk440
  • https://doi.org/10.4213/mvk440
  • https://www.mathnet.ru/eng/mvk/v14/i2/p97
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024