Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2023, Volume 14, Issue 1, Pages 27–43
DOI: https://doi.org/10.4213/mvk429
(Mi mvk429)
 

Representations of skew linear recurrent sequences of maximal period over finite field

M. A. Goltvanitsa

LLC «Certification Research Center», Moscow
References:
Abstract: Let $p$ be a prime number, $R=\mathrm{GF}(q)$ be a finite field, where $q = p^r$, $S=\mathrm{GF}(q^{n})$ be its extension of degree $n$ and $\check{S}$ be a ring of linear transforms of the vector space ${}_RS$. A sequence $v$ over $S$ with a recursion law of the form
$$ \forall i\in\mathbb{N}_0 \colon v(i+m)= \psi_{m-1}(v(i+m-1))+\ldots+\psi_0(v(i)), \psi_0,\ldots,\psi_{m-1 }\in\check{S}, $$
is called skew linear recurrent sequence over $S$ of order $m$ with the characteristic polynomial $\Psi(x) = x^m - \sum_{j=0}^{m-1}\psi_jx^j$. It is well known that maximal period of such sequence is equal to $q^{mn}-1$. Let $v$ be a skew LRS of maximal period over $S$, $J$ be an arbitrary ring with identity $\mathbf{e}$ such that $q\mathbf{e}$ is not a zero divisor and $f: S \to J$ be a map. Below under certain conditions we describe the annihilator of the sequence $f(v)$.
Key words: finite field, ML-sequence, skew LRS, rank, annihilator.
Received 27.V.2022
Bibliographic databases:
Document Type: Article
UDC: 519.113.6+519.719.2
Language: Russian
Citation: M. A. Goltvanitsa, “Representations of skew linear recurrent sequences of maximal period over finite field”, Mat. Vopr. Kriptogr., 14:1 (2023), 27–43
Citation in format AMSBIB
\Bibitem{Gol23}
\by M.~A.~Goltvanitsa
\paper Representations of skew linear recurrent sequences of maximal period over finite field
\jour Mat. Vopr. Kriptogr.
\yr 2023
\vol 14
\issue 1
\pages 27--43
\mathnet{http://mi.mathnet.ru/mvk429}
\crossref{https://doi.org/10.4213/mvk429}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4593643}
Linking options:
  • https://www.mathnet.ru/eng/mvk429
  • https://doi.org/10.4213/mvk429
  • https://www.mathnet.ru/eng/mvk/v14/i1/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024