Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2022, Volume 13, Issue 4, Pages 97–124
DOI: https://doi.org/10.4213/mvk425
(Mi mvk425)
 

This article is cited in 2 scientific papers (total in 2 papers)

Generalized quasi-Hadamard transformations on finite groups

B. A. Pogorelova, M. A. Pudovkinab

a Academy of Cryptography of the Russian Federation, Moscow
b National Research Nuclear University (MEPhI)
Full-text PDF (530 kB) Citations (2)
References:
Abstract: In this paper, we introduce a generalization of quasi-Hadamard transformations on a finite group $X$. For $X = {\mathbb{Z}}_{2^m}$, it includes the pseudo-Hadamard transformation used in the Safer block cipher, the Twofish block cipher and Quasi-Hadamard transformations. We get a criterion of their bijectivity. It depends on a class of transformations which include orthomorphisms and complete transformations. Using Kronecker product of matrices, we also define generalized quasi-Hadamard transformations on $X^{2^d}$ for any $d \geq 1 $. For bijective generalized quasi-Hadamard transformations, we describe diffusion properties of imprimitivity systems of regular permutation representations of additive groups ${\mathbb{Z}}_{2^m}^2$ and ${\mathbb{Z}}_{2^{2m}}$. We describe a set of generalized quasi-Hadamard transformations having the best diffusion properties of the imprimitivity systems.
Key words: Safer block cipher family, Twofish block cipher, pseudo-Hadamard transformation, quasi-Hadamard transformation, imprimitivity system, primitive group, regular permutation representation.
Received 27.V.2022
Bibliographic databases:
Document Type: Article
UDC: 512.544.4 + 519.719.2
Language: Russian
Citation: B. A. Pogorelov, M. A. Pudovkina, “Generalized quasi-Hadamard transformations on finite groups”, Mat. Vopr. Kriptogr., 13:4 (2022), 97–124
Citation in format AMSBIB
\Bibitem{PogPud22}
\by B.~A.~Pogorelov, M.~A.~Pudovkina
\paper Generalized quasi-Hadamard transformations on finite groups
\jour Mat. Vopr. Kriptogr.
\yr 2022
\vol 13
\issue 4
\pages 97--124
\mathnet{http://mi.mathnet.ru/mvk425}
\crossref{https://doi.org/10.4213/mvk425}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4529120}
Linking options:
  • https://www.mathnet.ru/eng/mvk425
  • https://doi.org/10.4213/mvk425
  • https://www.mathnet.ru/eng/mvk/v13/i4/p97
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024