Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2022, Volume 13, Issue 4, Pages 69–95
DOI: https://doi.org/10.4213/mvk424
(Mi mvk424)
 

Periodical properties of multidimensional polynomial generator over Galois ring. IV

O. A. Kozlitin

Certification Research Center, LLC, Moscow
References:
Abstract: $m$-dimensional polynomial substitutions of Galois rings consisting of $q^n$ elements and having the characteristic $p^n$ are investigated in this paper. The maximum cycle length in such substitutions is $L_m(R)=q^m(q^m-1)p^{n-2}$. Substitutions that contain an $L_m(R)$ length cycle are called full-length cycle substitutions (FLC-substitutions). A method permitting to construct FLC-substitutions is proposed. The number of substitutions that can be constructed by this method is estimated. The obtained results are applied to the synthesis of polynomial shift registers with a given cyclic structure.
Key words: Galois ring, polynomial substitution, shift register, cyclic structure.
Received 27.V.2022
Bibliographic databases:
Document Type: Article
UDC: 519.113.6+519.12+519.719.2
Language: Russian
Citation: O. A. Kozlitin, “Periodical properties of multidimensional polynomial generator over Galois ring. IV”, Mat. Vopr. Kriptogr., 13:4 (2022), 69–95
Citation in format AMSBIB
\Bibitem{Koz22}
\by O.~A.~Kozlitin
\paper Periodical properties of multidimensional polynomial generator over Galois ring.~IV
\jour Mat. Vopr. Kriptogr.
\yr 2022
\vol 13
\issue 4
\pages 69--95
\mathnet{http://mi.mathnet.ru/mvk424}
\crossref{https://doi.org/10.4213/mvk424}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4529119}
Linking options:
  • https://www.mathnet.ru/eng/mvk424
  • https://doi.org/10.4213/mvk424
  • https://www.mathnet.ru/eng/mvk/v13/i4/p69
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024