Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2022, Volume 13, Issue 3, Pages 107–130
DOI: https://doi.org/10.4213/mvk419
(Mi mvk419)
 

This article is cited in 1 scientific paper (total in 1 paper)

The simplest overgroups of regular permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$

B. A. Pogorelova, M. A. Pudovkinab

a Academy of Cryptography of the Russian Federation, Moscow
b National Research Nuclear University (MEPhI)
Full-text PDF (534 kB) Citations (1)
References:
Abstract: For any nonabelian $2$-group $H_m$ with a subgroup of index $2$ (namely the dihedral group $D_{2^m}$, the generalized quaternion group $Q_{2^m}$, the modular maximal-cyclic group $M_{2^m}$, the quasidihedral group $SD_{2^m}$) we consider its simplest overgroups. In this way we describe properties of the group generated by the right and the left regular permutation representations of any $H_m$ including its structure, order, center, rang and estimate of the minimal degree. We characterise its automorphism group and all isomorphic embeddings of $H_m$ (of order $2^m$) into the affine group of the residue ring $\mathbb{Z}_{2^{m - 1}}$ if such embeddings exist.
Key words: dihedral group, generalized quaternion group, modular maximal-cyclic group, quasidihedral group, permutation representation, imprimitive group.
Received 20.V.2020
Bibliographic databases:
Document Type: Article
UDC: 512.547.2
Language: Russian
Citation: B. A. Pogorelov, M. A. Pudovkina, “The simplest overgroups of regular permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$”, Mat. Vopr. Kriptogr., 13:3 (2022), 107–130
Citation in format AMSBIB
\Bibitem{PogPud22}
\by B.~A.~Pogorelov, M.~A.~Pudovkina
\paper The simplest overgroups of regular permutation representations of nonabelian $2$-groups with a cyclic subgroup of index~$2$
\jour Mat. Vopr. Kriptogr.
\yr 2022
\vol 13
\issue 3
\pages 107--130
\mathnet{http://mi.mathnet.ru/mvk419}
\crossref{https://doi.org/10.4213/mvk419}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4520131}
Linking options:
  • https://www.mathnet.ru/eng/mvk419
  • https://doi.org/10.4213/mvk419
  • https://www.mathnet.ru/eng/mvk/v13/i3/p107
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024