Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2022, Volume 13, Issue 3, Pages 93–106
DOI: https://doi.org/10.4213/mvk418
(Mi mvk418)
 

This article is cited in 1 scientific paper (total in 1 paper)

Two variants of Lempel – Ziv test for binary sequences

V. G. Mikhailov, V. I. Kruglov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (464 kB) Citations (1)
References:
Abstract: Let according to hypothesis $H_0$ the elements of sequence $X_1,\ldots,X_n$ are independent random variables and have equiprobable distribution on the set $\{0,1\}$. We propose two goodness-of-fit tests for the hypothesis $H_0$ based on the Lempel – Ziv statistic $W(T)$ computed for blocks of length $T$. For the first test a sequence of length $n=2mT$ is divided into $2m$ blocks of length $T$, for these blocks values $W_1(T),\ldots, W_{2m}(T)$ of Lempel – Ziv statistic are computed. The first test is based on the statistic $\tilde W(2mT)=\sum_{k=1}^m W_k(T)-\sum_{k=m+1}^{2m}W_k(T)$, its distribution under $H_0$ is symmetric about zero. For the second test a sequence of length $n=mrT$ is divided into $mr$ blocks of length $T$. For these blocks values $W_{i,j}(T)$ ($i=\in\{1,\ldots,m\}, j\in\{1,\ldots,r\}$) of Lempel – Ziv statistic are computed. The second test is based on the value $\tilde \chi^2(mrT)=\max_{1\le k\le m} \chi_k^2(rT)$, where $\chi_k^2(rT)$ is a chi-square statistic corresponding to $W_{k,1}(T),\ldots, W_{k,r}(T).$ For both tests we find limit distributions of statistics, and for the first test we also give an estimate of the rate of convergence to the limit normal distribution. Formulas for the computation of distribution of $W(T)$ are described.
Key words: Lempel – Ziv test, RNG testing, statistical tests, computation of distributions.
Received 14.XI.2021
Bibliographic databases:
Document Type: Article
UDC: 519.212.2+519.115
Language: English
Citation: V. G. Mikhailov, V. I. Kruglov, “Two variants of Lempel – Ziv test for binary sequences”, Mat. Vopr. Kriptogr., 13:3 (2022), 93–106
Citation in format AMSBIB
\Bibitem{MikKru22}
\by V.~G.~Mikhailov, V.~I.~Kruglov
\paper Two variants of Lempel -- Ziv test for binary sequences
\jour Mat. Vopr. Kriptogr.
\yr 2022
\vol 13
\issue 3
\pages 93--106
\mathnet{http://mi.mathnet.ru/mvk418}
\crossref{https://doi.org/10.4213/mvk418}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4520130}
Linking options:
  • https://www.mathnet.ru/eng/mvk418
  • https://doi.org/10.4213/mvk418
  • https://www.mathnet.ru/eng/mvk/v13/i3/p93
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024