Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2022, Volume 13, Issue 3, Pages 77–92
DOI: https://doi.org/10.4213/mvk417
(Mi mvk417)
 

This article is cited in 1 scientific paper (total in 1 paper)

Random partitions with two-side bounds and $(r,s)$-Bell polynomials in a parametric probabilistic model

G. I. Ivchenko, Yu. I. Medvedev

Academy of Cryptography of the Russian Federation, Moscow
Full-text PDF (454 kB) Citations (1)
References:
Abstract: On the set of all partitions of an $n$-element set $X_n = \{1,2,\ldots,n\}$ into blocks with sizes exceeding the number $r \geq 0$ and not exceeding the number $s \leq n$ a probability measure is defined such that the probability of each partition with $k$ blocks is proportional to $\theta^k$, where $\theta > 0$ is the parameter of measure. The $(r,s)$-Bell polynomials are introduced and their asymptotic are investigated for $n,r,s \to \infty$. The asymptotic normality of the numbers of blocks in a random partition of $X_n$ in this model is proved, a statistical test for the uniformity hypothesis $H_0\colon \theta = 1$ against the alternatives $H_0\colon \theta \ne 1$ is constructed.
Key words: $A_{r,s}$-random partitions, parametric model, $(r,s)$-Stirling numbers of the second type, $(r,s)$-Bell polynomials, limit theorems, statistical inferences.
Received 15.V.2020
Bibliographic databases:
Document Type: Article
UDC: 519.212.2+519.115
Language: Russian
Citation: G. I. Ivchenko, Yu. I. Medvedev, “Random partitions with two-side bounds and $(r,s)$-Bell polynomials in a parametric probabilistic model”, Mat. Vopr. Kriptogr., 13:3 (2022), 77–92
Citation in format AMSBIB
\Bibitem{IvcMed22}
\by G.~I.~Ivchenko, Yu.~I.~Medvedev
\paper Random partitions with two-side bounds and $(r,s)$-Bell polynomials in a parametric probabilistic model
\jour Mat. Vopr. Kriptogr.
\yr 2022
\vol 13
\issue 3
\pages 77--92
\mathnet{http://mi.mathnet.ru/mvk417}
\crossref{https://doi.org/10.4213/mvk417}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4520129}
Linking options:
  • https://www.mathnet.ru/eng/mvk417
  • https://doi.org/10.4213/mvk417
  • https://www.mathnet.ru/eng/mvk/v13/i3/p77
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024