Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2022, Volume 13, Issue 3, Pages 55–76
DOI: https://doi.org/10.4213/mvk416
(Mi mvk416)
 

Criteria for testing the hypothesis on a noisy functional dependency between random binary vectors and bits

O. V. Denisov

LLC «Innovative Telecommunication Technologies», Moscow
References:
Abstract: A sequence of random independent and uniformly distributed binary vectors $\vec x(t)$ and a sequence of random independent bits $y(t)$ are observed. Hypothesis $H_1\colon \{\vec x(t),y(t)$ are independent$\}$ is tested against $H_2\colon\{y(t)$ is corrupted value of $f(\vec x(t))\}$, the function $f$ essentially depends on an unknown part of the variables. We construct criteria based on sets of spectral statistics in situations of unknown $f$ or known $f$, and give asymptotic estimates of the volume of the size of the sample.
Key words: hypothesis testing, functional dependency, binary function.
Received 12.V.2021
Bibliographic databases:
Document Type: Article
UDC: 519.719.2+519.233.2
Language: Russian
Citation: O. V. Denisov, “Criteria for testing the hypothesis on a noisy functional dependency between random binary vectors and bits”, Mat. Vopr. Kriptogr., 13:3 (2022), 55–76
Citation in format AMSBIB
\Bibitem{Den22}
\by O.~V.~Denisov
\paper Criteria for testing the hypothesis on a noisy functional dependency between random binary vectors and bits
\jour Mat. Vopr. Kriptogr.
\yr 2022
\vol 13
\issue 3
\pages 55--76
\mathnet{http://mi.mathnet.ru/mvk416}
\crossref{https://doi.org/10.4213/mvk416}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4520128}
Linking options:
  • https://www.mathnet.ru/eng/mvk416
  • https://doi.org/10.4213/mvk416
  • https://www.mathnet.ru/eng/mvk/v13/i3/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024