Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2022, Volume 13, Issue 2, Pages 17–35
DOI: https://doi.org/10.4213/mvk406
(Mi mvk406)
 

Small scalar multiplication on Weierstrass curves using division polynomials

S. V. Agievich, S. V. Poruchnik, V. I. Semenov

Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, Minsk, Belarus
References:
Abstract: This paper deals with elliptic curves in the short Weierstrass form over large prime fields and presents algorithms for computing small odd multiples of a given point $P$ on a curve. Our algorithms make use of division polynomials and are more efficient than the naive algorithm based on repeated additions with $2P$. We show how to perform scalar multiplication in the variable base settings using the precomputed small multiples. By employing the window method and avoiding conditional branches, we achieve the constant-time property for the final scalar multiplication algorithm. Small multiples are computed in either Jacobian or affine coordinates. To obtain affine coordinates, we use Montgomery's trick of simultaneous multiplicative inversion of several field elements. The conversion to affine coordinates slows down the precomputations but speeds up the main scalar multiplication loop. We show that the conversion makes sense and gives an overall performance boost in practical settings.
Key words: elliptic curve, short Weierstrass form, division polynomial, scalar multiplication.
Received 10.XI.2021
Bibliographic databases:
Document Type: Article
UDC: 519.719.2
Language: English
Citation: S. V. Agievich, S. V. Poruchnik, V. I. Semenov, “Small scalar multiplication on Weierstrass curves using division polynomials”, Mat. Vopr. Kriptogr., 13:2 (2022), 17–35
Citation in format AMSBIB
\Bibitem{AgiPorSem22}
\by S.~V.~Agievich, S.~V.~Poruchnik, V.~I.~Semenov
\paper Small scalar multiplication on Weierstrass curves using~division polynomials
\jour Mat. Vopr. Kriptogr.
\yr 2022
\vol 13
\issue 2
\pages 17--35
\mathnet{http://mi.mathnet.ru/mvk406}
\crossref{https://doi.org/10.4213/mvk406}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4457081}
Linking options:
  • https://www.mathnet.ru/eng/mvk406
  • https://doi.org/10.4213/mvk406
  • https://www.mathnet.ru/eng/mvk/v13/i2/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024