|
This article is cited in 1 scientific paper (total in 1 paper)
Skew $\sigma$-splittable linear recurrent sequences with maximal period
M. A. Goltvanitsa LLC «Certification Research Center», Moscow
Abstract:
Let $p$ be a prime number, $R=\mathrm{GR}(q^d,p^d)$ be a Galois ring of cardinality $q^d$ and characteristic $p^d$, where $q = p^r$, $S=\mathrm{GR}(q^{nd},p^d)$ be its extension of degree $n$ and $\sigma$ be a Frobenius automorphism of $S$ over $R$. We study sequences $v$ over $S$ satisfying recursion laws of the form $$\forall i\in\mathbb{N}_0 \colon v(i+m) = s_{m - 1}\sigma^{k_{m-1}}(v(i+m-1))+\ldots+s_1\sigma^{k_1}(v(i+1)) + s_0\sigma^{k_0}(v(i)),$$ where $s_0,\ldots,s_{m-1}\in S, k_{0},\ldots, k_{m-1}\in \mathbb{N}_{0}$. We say that $v$ is $\sigma$-splittable skew linear recurrent sequence (LRS) over $S$ of order $m$. The period of such LRS is not greater than $(q^{mn}-1)p^{d-1}$. We obtain neccessary and sufficient conditions for $\sigma$-splittable skew LRS to have maximal period. We prove that under some conditions $\sigma$-splittable skew LRS are non-linearized skew LRS. Also we consider linear complexity of such sequences and uniqueness of minimal polynomial over $S$.
Key words:
Galois ring, Frobenius automorphism, ML-sequence, skew LRS, recursion law.
Received 12.V.2021
Citation:
M. A. Goltvanitsa, “Skew $\sigma$-splittable linear recurrent sequences with maximal period”, Mat. Vopr. Kriptogr., 13:1 (2022), 33–67
Linking options:
https://www.mathnet.ru/eng/mvk401https://doi.org/10.4213/mvk401 https://www.mathnet.ru/eng/mvk/v13/i1/p33
|
Statistics & downloads: |
Abstract page: | 205 | Full-text PDF : | 59 | References: | 48 | First page: | 15 |
|