Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2021, Volume 12, Issue 4, Pages 115–123
DOI: https://doi.org/10.4213/mvk381
(Mi mvk381)
 

This article is cited in 1 scientific paper (total in 1 paper)

Faster point compression for elliptic curves of $j$-invariant $0$

D. I. Koshelevabc

a Versailles Saint-Quentin-en-Yvelines University, France
b Infotecs, Moscow
c Institute for Information Transmission Problems, Russia
Full-text PDF (461 kB) Citations (1)
References:
Abstract: The article provides a new double point compression method (to $2\lceil\log_2(q)\rceil + 4$ bits) for an elliptic curve $E_b : y^2 = x^3 + b$ of $j$-invariant $0$ over a finite field $\mathbb{F}_{q}$ such that $q\equiv{1}\pmod{3}$. More precisely, we obtain explicit simple formulas transforming the coordinates $x_0, y_0, x_1, y_1$ of two points $P_0, P_1 \in E_b(\mathbb{F}_{q})$ to some two elements of $\mathbb{F}_{q}$ with four auxiliary bits. In order to recover (in the decompression stage) the points $P_0, P_1$ it is proposed to extract a sixth root $\sqrt[6]{Z} \in \mathbb{F}_{q}$ of some element $Z \in \mathbb{F}_{q}$. It is known that for $q\equiv{3}\pmod{4}$, $q\not\equiv{1}\pmod{27}$ this may be implemented by means of just one exponentiation in $\mathbb{F}_{q}$. Therefore the new compression method seems to be much faster than the classical one with the coordinates $x_0, x_1$, whose decompression stage requires two exponentiations in $\mathbb{F}_{q}$. We also successfully adapt the new approach for compressing one $\mathbb{F}_{q^2}$-point on a curve $E_b$ with $b \in \mathbb{F}_{q^2}^*$.
Key words: finite fields, pairing-based cryptography, elliptic curves of $j$-invariant $0$, point compression.
Funding agency Grant number
Fondation Mathématique Jacques Hadamard
This work was supported by a public grant as part of the FMJH project.
Received 19.VII.2021
Document Type: Article
UDC: 519.719.2
Language: English
Citation: D. I. Koshelev, “Faster point compression for elliptic curves of $j$-invariant $0$”, Mat. Vopr. Kriptogr., 12:4 (2021), 115–123
Citation in format AMSBIB
\Bibitem{Kos21}
\by D.~I.~Koshelev
\paper Faster point compression for elliptic curves of $j$-invariant $0$
\jour Mat. Vopr. Kriptogr.
\yr 2021
\vol 12
\issue 4
\pages 115--123
\mathnet{http://mi.mathnet.ru/mvk381}
\crossref{https://doi.org/10.4213/mvk381}
Linking options:
  • https://www.mathnet.ru/eng/mvk381
  • https://doi.org/10.4213/mvk381
  • https://www.mathnet.ru/eng/mvk/v12/i4/p115
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024