Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2021, Volume 12, Issue 3, Pages 89–124
DOI: https://doi.org/10.4213/mvk377
(Mi mvk377)
 

This article is cited in 3 scientific papers (total in 3 papers)

Constructing $8$-bit permutations, $8$-bit involutions and $8$-bit orthomorphisms with almost optimal cryptographic parameters

R. A. de la Cruz Jiménez

Institute of Cryptography, Havana University, Cuba
References:
Abstract: Nonlinear bijective transformations are crucial components in the design of many symmetric ciphers. To construct permutations having cryptographic properties close to the optimal ones is not a trivial problem. We propose a new construction based on the well-known Lai – Massey structure for generating binary permutations of dimension $n=2k$, $k\geq2$. The main cores of our constructions are: the inversion in $\mathbb{F}_{2^k}$, an arbitrary $k$-bit non-bijective function (which has no preimage for $0$) and any $k$-bit permutation. Combining these components with the finite field multiplication, we provide new $8$-bit permutations with high values of its basic cryptographic parameters. Also, we show that our approach may be used for constructing $8$-bit involutions and $8$-bit orthomorphisms that have strong cryptographic properties.
Key words: S-Box, permutation, involution, orthomorphism.
Received 22.XI.2020
Document Type: Article
UDC: 519.719.2
Language: English
Citation: R. A. de la Cruz Jiménez, “Constructing $8$-bit permutations, $8$-bit involutions and $8$-bit orthomorphisms with almost optimal cryptographic parameters”, Mat. Vopr. Kriptogr., 12:3 (2021), 89–124
Citation in format AMSBIB
\Bibitem{De 21}
\by R.~A.~de la Cruz Jim\'enez
\paper Constructing $8$-bit permutations, $8$-bit involutions and $8$-bit orthomorphisms with almost optimal cryptographic parameters
\jour Mat. Vopr. Kriptogr.
\yr 2021
\vol 12
\issue 3
\pages 89--124
\mathnet{http://mi.mathnet.ru/mvk377}
\crossref{https://doi.org/10.4213/mvk377}
Linking options:
  • https://www.mathnet.ru/eng/mvk377
  • https://doi.org/10.4213/mvk377
  • https://www.mathnet.ru/eng/mvk/v12/i3/p89
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024