Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2021, Volume 12, Issue 2, Pages 7–20
DOI: https://doi.org/10.4213/mvk353
(Mi mvk353)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the guaranteed number of activations in $\mathsf{XS}$-circuits

S. V. Agievich

Research Institute for Applied Problems of Mathematics and Informatics Belarusian State University, Minsk, Belarus
Full-text PDF (418 kB) Citations (3)
References:
Abstract: $\mathsf{XS}$-circuits describe cryptographic primitives that utilize two operations on binary words of fixed length: bitwise modulo $2$ addition ($\mathsf{X}$) and substitution ($\mathsf{S}$). The words are interpreted as elements of a field of characteristic $2$. In this paper, we develop a model of $\mathsf{XS}$-circuits according to which several instances of a simple round circuit containing only one $\mathsf{S}$ operation are linked together and form a compound circuit called a cascade. $\mathsf{S}$ operations of a cascade are interpreted as independent round oracles. When a cascade processes a pair of different inputs, some round oracles get different queries, these oracles are activated. The more activations, the higher security guarantees against differential cryptanalysis the cascade provides. We introduce the notion of the guaranteed number of activations, that is, the minimum number of activations over all choices of the base field, round oracles and pairs of inputs. We show that the guaranteed number of activations is related to the minimum distance of the linear code associated with the cascade. It is also related to the minimum number of occurrences of units in segments of binary linear recurrence sequences whose characteristic polynomial is determined by the round circuit. We provide an algorithm for calculating the guaranteed number of activations. We show how to use this algorithm to deal with linear activations related to linear cryptanalysis.
Key words: circuit, differential cryptanalysis, linear cryptanalysis, linear code, linear recurrence sequence.
Received 25.XI.2020
Bibliographic databases:
Document Type: Article
UDC: 519.719.2
Language: English
Citation: S. V. Agievich, “On the guaranteed number of activations in $\mathsf{XS}$-circuits”, Mat. Vopr. Kriptogr., 12:2 (2021), 7–20
Citation in format AMSBIB
\Bibitem{Agi21}
\by S.~V.~Agievich
\paper On the guaranteed number of activations in~$\mathsf{XS}$-circuits
\jour Mat. Vopr. Kriptogr.
\yr 2021
\vol 12
\issue 2
\pages 7--20
\mathnet{http://mi.mathnet.ru/mvk353}
\crossref{https://doi.org/10.4213/mvk353}
\elib{https://elibrary.ru/item.asp?id=47173008}
Linking options:
  • https://www.mathnet.ru/eng/mvk353
  • https://doi.org/10.4213/mvk353
  • https://www.mathnet.ru/eng/mvk/v12/i2/p7
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :70
    References:44
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024