Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2021, Volume 12, Issue 1, Pages 23–57
DOI: https://doi.org/10.4213/mvk347
(Mi mvk347)
 

This article is cited in 2 scientific papers (total in 2 papers)

New representaions of elements of skew linear recurrent sequences via trace function based on the noncommutative Hamilton – Cayley theorem

M. A. Goltvanitsa

LLC «Certification Research Center», Moscow
Full-text PDF (556 kB) Citations (2)
References:
Abstract: Let $p$ be a prime number, $R=\mathrm{GR}(q^d,p^d)$ be a Galois ring of cardinality $q^d$ and characteristic $p^d$, where $q = p^r$, $S=\mathrm{GR}(q^{nd},p^d)$ be its extension of degree $n$ and $\mathrm{End}(_RS)$ be a ring of endomorphisms of the module $_RS$. A sequence $v$ over $S$ satisfying a recursion law
$$ \forall i\in\mathbb{N}_0 \colon v(i+m)= \ \psi_{m-1}(v(i+m-1))+\ldots+\psi_0(v(i)), $$
$\psi_0,\ldots,\psi_{m-1}\in \mathrm{End}(_RS),$ is called skew linear recurrent sequence (LRS) over $S$; the maximal period of such sequence is equal to $(q^{mn}-1)p^{d-1}$. Using the trace function for representations of elements of skew LRS of maximal period we show that such LRS may be linearized if the coefficients in the recursion law are pairwise commuting.
Key words: Galois ring, Frobenius automorphism, ML-sequence, skew LRS, trace function.
Received 15.V.2020
Document Type: Article
UDC: 519.113.6+512.714+519.719.2
Language: Russian
Citation: M. A. Goltvanitsa, “New representaions of elements of skew linear recurrent sequences via trace function based on the noncommutative Hamilton – Cayley theorem”, Mat. Vopr. Kriptogr., 12:1 (2021), 23–57
Citation in format AMSBIB
\Bibitem{Gol21}
\by M.~A.~Goltvanitsa
\paper New representaions of elements of skew linear recurrent sequences via trace function based on the noncommutative Hamilton -- Cayley theorem
\jour Mat. Vopr. Kriptogr.
\yr 2021
\vol 12
\issue 1
\pages 23--57
\mathnet{http://mi.mathnet.ru/mvk347}
\crossref{https://doi.org/10.4213/mvk347}
Linking options:
  • https://www.mathnet.ru/eng/mvk347
  • https://doi.org/10.4213/mvk347
  • https://www.mathnet.ru/eng/mvk/v12/i1/p23
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :126
    References:41
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024