Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2020, Volume 11, Issue 4, Pages 107–131
DOI: https://doi.org/10.4213/mvk343
(Mi mvk343)
 

Nonabelian key addition groups and $\otimes _{\mathbf{W}}$-markovian property of block ciphers

B. A. Pogorelova, M. A. Pudovkinab

a Academy of Cryptography of the Russian Federation, Moscow
b Bauman Moscow State Technical University, Moscow
References:
Abstract: For an Abelian key addition group $\left( {X, \otimes } \right)$ and a partition ${\bf{W}} = \{ {W_0},\ldots ,{W_{r-1}}\}$ of a set $X$ we had introduced ${ \otimes _{\bf{W}}}$-markovian transformations and ${ \otimes _{\bf{W}}}$-markovian ciphers. The ${ \otimes _{\bf{W}}}$-markovian condition is required to validate different generalizations of differential technique. In this paper, we study ${ \otimes _{\bf{W}}}$-markovian ciphers and transformations on an nonabelian group $\left( {X, \otimes } \right)$. We get restrictions on the structure of groups $(X, \otimes )$, $\left\langle {{g_k}|k \in X} \right\rangle $ and blocks of a nontrivial partition ${\bf{W}}$ as a consequence of the condition of partial preservation of $\bf{W}$ by the round function ${g_k}\colon X \to X$ for all $k \in X$. For all nonabelian groups of the order ${2^m}$ with a cyclic subgroup having index $2$ we describe classes of ${ \otimes _{\bf{W}}}$-markovian permutations.
Key words: Markovian block cipher, $\otimes _{\mathbf{W}}$-markovian property, XSL-block cipher, nonabelian group, dihedral group, generalized quaternion group.
Received 29.IV.2019
Document Type: Article
UDC: 519.719.2
Language: Russian
Citation: B. A. Pogorelov, M. A. Pudovkina, “Nonabelian key addition groups and $\otimes _{\mathbf{W}}$-markovian property of block ciphers”, Mat. Vopr. Kriptogr., 11:4 (2020), 107–131
Citation in format AMSBIB
\Bibitem{PogPud20}
\by B.~A.~Pogorelov, M.~A.~Pudovkina
\paper Nonabelian key addition groups and $\otimes _{\mathbf{W}}$-markovian property of block ciphers
\jour Mat. Vopr. Kriptogr.
\yr 2020
\vol 11
\issue 4
\pages 107--131
\mathnet{http://mi.mathnet.ru/mvk343}
\crossref{https://doi.org/10.4213/mvk343}
Linking options:
  • https://www.mathnet.ru/eng/mvk343
  • https://doi.org/10.4213/mvk343
  • https://www.mathnet.ru/eng/mvk/v11/i4/p107
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024