Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2020, Volume 11, Issue 1, Pages 115–143
DOI: https://doi.org/10.4213/mvk317
(Mi mvk317)
 

This article is cited in 1 scientific paper (total in 1 paper)

Linear decomposition of discrete functions in terms of shift-composition operation

I. V. Cherednik

LLC «Certification Research Center», Moscow
Full-text PDF (434 kB) Citations (1)
References:
Abstract: We investigate the shift-composition operation on discrete functions that arise in connection with homomorphisms of shift registers. For an arbitrary function over a finite field all possible representations in the form of shift-compositions of two functions (where the right function is linear) are described. Besides, the possibility to represent an arbitrary function as a shift-composition of three functions such that both left and right functions are linear is studied. It is proved that in the case of a simple field for linear functions and quadratic functions that are linear in the extreme variable the concepts of reducibility and linear reducibility coincide.
Key words: discrete functions, finite fields, shift register, shift-composition.
Received 29.IV.2019
Document Type: Article
UDC: 519.713.2+519.714.5
Language: Russian
Citation: I. V. Cherednik, “Linear decomposition of discrete functions in terms of shift-composition operation”, Mat. Vopr. Kriptogr., 11:1 (2020), 115–143
Citation in format AMSBIB
\Bibitem{Che20}
\by I.~V.~Cherednik
\paper Linear decomposition of discrete functions in terms of shift-composition operation
\jour Mat. Vopr. Kriptogr.
\yr 2020
\vol 11
\issue 1
\pages 115--143
\mathnet{http://mi.mathnet.ru/mvk317}
\crossref{https://doi.org/10.4213/mvk317}
Linking options:
  • https://www.mathnet.ru/eng/mvk317
  • https://doi.org/10.4213/mvk317
  • https://www.mathnet.ru/eng/mvk/v11/i1/p115
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024