Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2019, Volume 10, Issue 3, Pages 49–65
DOI: https://doi.org/10.4213/mvk299
(Mi mvk299)
 

This article is cited in 1 scientific paper (total in 1 paper)

Pseudorandom sequence generators based on shift registers over finite chain rings

O. A. Kozlitin

Certification Research Center, LLC, Moscow
Full-text PDF (470 kB) Citations (1)
References:
Abstract: This article is based on a report made at the conference CTCrypt'2018. The paper contains an overview of the author's results related to the synthesis of pseudorandom sequence generators. For arbitrary $m$ and for Galois ring $R$ the maximum length $L_m(R)$ of cycles of bijective polynomial transformations of module $R^m$ is calculated. An algorithm is proposed that constructs polynomial transformations with a cycle of length $L_m(R)$. Some estimates of the periods and ranks of the output sequences of self-controlled $2$-dimensional linear shift registers ($2$-LFSR) are obtained. The frequencies of occurrence of signs on the cycles of the output sequences of $2$-LFSR are investigated. A new result is announced in the article, consisting of the fact that over Galois ring $R$ there are polynomial shift registers of length $m$, the state transition graph of which contains a cycle of length $L_m(R)$.
Key words: polynomial generator, polynomial shift register, multidimensional linear shift register, multidimensional linear recurrence sequence.
Received 11.VII.2019
Document Type: Article
UDC: 519.719.2+519.248:[004+007+654]
Language: Russian
Citation: O. A. Kozlitin, “Pseudorandom sequence generators based on shift registers over finite chain rings”, Mat. Vopr. Kriptogr., 10:3 (2019), 49–65
Citation in format AMSBIB
\Bibitem{Koz19}
\by O.~A.~Kozlitin
\paper Pseudorandom sequence generators based on shift registers over finite chain rings
\jour Mat. Vopr. Kriptogr.
\yr 2019
\vol 10
\issue 3
\pages 49--65
\mathnet{http://mi.mathnet.ru/mvk299}
\crossref{https://doi.org/10.4213/mvk299}
Linking options:
  • https://www.mathnet.ru/eng/mvk299
  • https://doi.org/10.4213/mvk299
  • https://www.mathnet.ru/eng/mvk/v10/i3/p49
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:443
    Full-text PDF :466
    References:42
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024