Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2019, Volume 10, Issue 1, Pages 27–40
DOI: https://doi.org/10.4213/mvk275
(Mi mvk275)
 

This article is cited in 2 scientific papers (total in 2 papers)

Partitions without small blocks and $r$-associated Bell polynomials in a parametric model: probabilistic-statistical analysis

G. I. Ivchenko, Yu. I. Medvedev

Academy of Cryptography of the Russian Federation, Moscow
Full-text PDF (189 kB) Citations (2)
References:
Abstract: On the set of all partitions of an $n$-element set $X_n = \{1, 2,\dots, n\}$ into blocks with sizes exceeding the number $r\geqslant 0$ a probability measure is defined such that for each partition with $k$ blocks its probability is proportional to $\theta^k$, where $\theta>0$ is the parameter of the measure. The asymptotic normality of the number of blocks in a random partition of $X_n$ in this model is proved, a statistical test for the uniformity hypothesis $H_0 :\, \theta = 1$ against the alternatives $H_1 :\, \theta \ne 1$ is constructed.
Key words: random partitions, number of blocks distribution, $r$-associated Bell polynomials.
Received 18.IV.2018
Bibliographic databases:
Document Type: Article
UDC: 519.212.2+519.115
Language: Russian
Citation: G. I. Ivchenko, Yu. I. Medvedev, “Partitions without small blocks and $r$-associated Bell polynomials in a parametric model: probabilistic-statistical analysis”, Mat. Vopr. Kriptogr., 10:1 (2019), 27–40
Citation in format AMSBIB
\Bibitem{IvcMed19}
\by G.~I.~Ivchenko, Yu.~I.~Medvedev
\paper Partitions without small blocks and $r$-associated Bell polynomials in a parametric model: probabilistic-statistical analysis
\jour Mat. Vopr. Kriptogr.
\yr 2019
\vol 10
\issue 1
\pages 27--40
\mathnet{http://mi.mathnet.ru/mvk275}
\crossref{https://doi.org/10.4213/mvk275}
\elib{https://elibrary.ru/item.asp?id=37652160}
Linking options:
  • https://www.mathnet.ru/eng/mvk275
  • https://doi.org/10.4213/mvk275
  • https://www.mathnet.ru/eng/mvk/v10/i1/p27
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:309
    Full-text PDF :144
    References:46
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024