Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2019, Volume 10, Issue 1, Pages 11–26
DOI: https://doi.org/10.4213/mvk274
(Mi mvk274)
 

On $2$-transitive products of three regular permutation groups of a finite field

M. M. Glukhov

Academy of Cryptography of the Russian Federation, Moscow
References:
Abstract: Let $G_n$ be a right regular representation of the group $(GF(2^n),\oplus)$. We describe some classes of permutations $h$ of the field $GF(2^n)$ such that the set $(G_n h)^3$ is $2$-transitive.
Key words: finite fields, differentially uniform permutations, $2$-transitivity.
Received 18.IV.2018
Bibliographic databases:
Document Type: Article
UDC: 519.542.7+519.719.2
Language: Russian
Citation: M. M. Glukhov, “On $2$-transitive products of three regular permutation groups of a finite field”, Mat. Vopr. Kriptogr., 10:1 (2019), 11–26
Citation in format AMSBIB
\Bibitem{Glu19}
\by M.~M.~Glukhov
\paper On $2$-transitive products of three regular permutation groups of a finite field
\jour Mat. Vopr. Kriptogr.
\yr 2019
\vol 10
\issue 1
\pages 11--26
\mathnet{http://mi.mathnet.ru/mvk274}
\crossref{https://doi.org/10.4213/mvk274}
\elib{https://elibrary.ru/item.asp?id=37652159}
Linking options:
  • https://www.mathnet.ru/eng/mvk274
  • https://doi.org/10.4213/mvk274
  • https://www.mathnet.ru/eng/mvk/v10/i1/p11
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:380
    Full-text PDF :199
    References:40
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024