Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2018, Volume 9, Issue 4, Pages 85–100
DOI: https://doi.org/10.4213/mvk271
(Mi mvk271)
 

This article is cited in 2 scientific papers (total in 2 papers)

The number of maximal period polynomial mappings over the Galois fields of odd characteristics

D. M. Ermilov

Certification Research Center, LLC, Moscow
Full-text PDF (234 kB) Citations (2)
References:
Abstract: Let $R = GR(q^n, p^n)$ be a Galois ring of cardinality $q^n$ and characteristics $p^n$, where $q = p^m$, $m, n > 1$. Let the sequence $U = \{u_i\}$ is defined by equations $u_{i+1} = f(u_i)$, $i \in \mathbb N_0$, and $f$ be a polynomial mapping of the ring $R$. It was proved earlier that the maximal possible period of $U$ equals $q(q-1)p^{n-2}$. Here we find the number of polynomial mappings over $R$ having maximal possible periods for $p\ne2$.
Key words: Galois rings, nonlinear generators, pseudorandom sequences, polynomial congruence generator.
Received 18.IV.2018
Bibliographic databases:
Document Type: Article
UDC: 519.213.21
Language: Russian
Citation: D. M. Ermilov, “The number of maximal period polynomial mappings over the Galois fields of odd characteristics”, Mat. Vopr. Kriptogr., 9:4 (2018), 85–100
Citation in format AMSBIB
\Bibitem{Erm18}
\by D.~M.~Ermilov
\paper The number of maximal period polynomial mappings over the Galois fields of odd characteristics
\jour Mat. Vopr. Kriptogr.
\yr 2018
\vol 9
\issue 4
\pages 85--100
\mathnet{http://mi.mathnet.ru/mvk271}
\crossref{https://doi.org/10.4213/mvk271}
\elib{https://elibrary.ru/item.asp?id=37652154}
Linking options:
  • https://www.mathnet.ru/eng/mvk271
  • https://doi.org/10.4213/mvk271
  • https://www.mathnet.ru/eng/mvk/v9/i4/p85
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024