Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2018, Volume 9, Issue 2, Pages 59–70
DOI: https://doi.org/10.4213/mvk256
(Mi mvk256)
 

Group properties of block ciphers of the Russian standards GOST R 34.11-2012 and GOST R 34.12-2015

V. V. Vlasovaa, M. A. Pudovkinab

a Kaspersky Lab, Moscow
b Bauman Moscow State Technical University, Moscow
References:
Abstract: A group generated by the set of the round functions is often used to describe properties of a block cipher. The results obtained by A. S. Maslov in 2007 are used to prove that round functions of Kuznyechik and Stribog generate the alternating groups. We prove a theorem on the mixing properties of linear transformations and apply this theorem to the family of Stribog-like ciphers (Stribog, Anubis, etc.).
Key words: GOST R 34.11–2012, GOST R 34.12–2015, Kuznyechik, Stribog, permutation groups, alternating group, linear transformation of block cipher.
Received 03.II.2017
Bibliographic databases:
Document Type: Article
UDC: 519.719.2
Language: English
Citation: V. V. Vlasova, M. A. Pudovkina, “Group properties of block ciphers of the Russian standards GOST R 34.11-2012 and GOST R 34.12-2015”, Mat. Vopr. Kriptogr., 9:2 (2018), 59–70
Citation in format AMSBIB
\Bibitem{VlaPud18}
\by V.~V.~Vlasova, M.~A.~Pudovkina
\paper Group properties of block ciphers of the Russian standards GOST R 34.11-2012 and GOST R 34.12-2015
\jour Mat. Vopr. Kriptogr.
\yr 2018
\vol 9
\issue 2
\pages 59--70
\mathnet{http://mi.mathnet.ru/mvk256}
\crossref{https://doi.org/10.4213/mvk256}
\elib{https://elibrary.ru/item.asp?id=35276438}
Linking options:
  • https://www.mathnet.ru/eng/mvk256
  • https://doi.org/10.4213/mvk256
  • https://www.mathnet.ru/eng/mvk/v9/i2/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024