Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2018, Volume 9, Issue 2, Pages 71–86
DOI: https://doi.org/10.4213/mvk253
(Mi mvk253)
 

This article is cited in 4 scientific papers (total in 4 papers)

Equidistant filters based on skew ML-sequences over fields

M. A. Goltvanitsa

Certification Research Center, LLC, Moscow
Full-text PDF (216 kB) Citations (4)
References:
Abstract: Let $p$ be a prime number, $R = \mathrm{GF}(q)$ be a field of $q = p^r$ elements and $S = \mathrm{GF}(q^n)$ be an extension of $R$. Let $\breve{S}$ be the ring of all linear transformations of the space $_RS$. A linear recurring sequence $v$ of order $m$ over the module $_{\breve{S}}S$ is said to be a skew linear recurring sequence (skew LRS) of order $m$ over $S$. The period $T(v)$ of such sequence satisfies the inequality $T(v) \leqslant\tau = q^{mn}-1$. If $T(v) = \tau$ we call $v$ a skew LRS of maximal period (skew MP LRS). Here we investigate periodic properties and rank (linear complexity) of the sequence $y(i) = v(i)v(i + k)\cdot\ldots\cdot v(i + k(s-1))$, $k, s \in \mathbb{N}_0$, $i\geqslant 0$, where $v$ is a skew MP LRS. Based on the obtained results we propose new methods for filtering generators construction based on skew MP LRS.
Key words: linear complexity, period, equidistant filter, skew linear recurrence.
Received 05.II.2017
Bibliographic databases:
Document Type: Article
UDC: 519.719.2
Language: English
Citation: M. A. Goltvanitsa, “Equidistant filters based on skew ML-sequences over fields”, Mat. Vopr. Kriptogr., 9:2 (2018), 71–86
Citation in format AMSBIB
\Bibitem{Gol18}
\by M.~A.~Goltvanitsa
\paper Equidistant filters based on skew ML-sequences over fields
\jour Mat. Vopr. Kriptogr.
\yr 2018
\vol 9
\issue 2
\pages 71--86
\mathnet{http://mi.mathnet.ru/mvk253}
\crossref{https://doi.org/10.4213/mvk253}
\elib{https://elibrary.ru/item.asp?id=35276439}
Linking options:
  • https://www.mathnet.ru/eng/mvk253
  • https://doi.org/10.4213/mvk253
  • https://www.mathnet.ru/eng/mvk/v9/i2/p71
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024