Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2017, Volume 8, Issue 2, Pages 29–38
DOI: https://doi.org/10.4213/mvk221
(Mi mvk221)
 

This article is cited in 4 scientific papers (total in 4 papers)

Lower bounds for the practical secrecy of a key

I. M. Arbekov

JSC “InfoTeCS”, Moscow
Full-text PDF (161 kB) Citations (4)
References:
Abstract: We obtain lower bounds for the practical secrecy of a key. Practical secrecy is defined as the average amount of keys tested before the encryption key is determined. To find the encryption key we use truncated key search algorithms having some success probabilities. The lower bounds of the practical secrecy are expressed in terms of limiting values of success probabilities and of total variation distance between the key probability distribution and the uniform distribution.
Key words: practical secrecy of a key, truncated key search, symmetric cryptography.
Received 17.III.2016
Bibliographic databases:
Document Type: Article
UDC: 519.719.2
Language: English
Citation: I. M. Arbekov, “Lower bounds for the practical secrecy of a key”, Mat. Vopr. Kriptogr., 8:2 (2017), 29–38
Citation in format AMSBIB
\Bibitem{Arb17}
\by I.~M.~Arbekov
\paper Lower bounds for the practical secrecy of a key
\jour Mat. Vopr. Kriptogr.
\yr 2017
\vol 8
\issue 2
\pages 29--38
\mathnet{http://mi.mathnet.ru/mvk221}
\crossref{https://doi.org/10.4213/mvk221}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3689430}
\elib{https://elibrary.ru/item.asp?id=29864946}
Linking options:
  • https://www.mathnet.ru/eng/mvk221
  • https://doi.org/10.4213/mvk221
  • https://www.mathnet.ru/eng/mvk/v8/i2/p29
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :202
    References:39
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024