Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2016, Volume 7, Issue 3, Pages 137–143
DOI: https://doi.org/10.4213/mvk200
(Mi mvk200)
 

Lower estimates of ranks of coordinate sequences of maximal period linear recurrent sequences over the non-trivial Galois ring

V. N. Tsypyshev

Moscow Technological University MIREA, Moscow
References:
Abstract: The Galois ring is called non-trivial if it is not a field and a residue ring. For the maximal period linear recurrent sequence over the non-trivial Galois ring $R=GR(q^n,p^n)$, $p\ge5$, new lower estimates of ranks of coordinate sequences with numbers $s$ such that $s=kr+2$, $r=\lg_pq$, $k\in\mathbb N_0$ are obtained.
Key words: Galois ring, linear recurrent sequence, coordinate sequence, rank of sequence.
Received 10.II.2015
Bibliographic databases:
Document Type: Article
UDC: 511.216+519.113.6
Language: Russian
Citation: V. N. Tsypyshev, “Lower estimates of ranks of coordinate sequences of maximal period linear recurrent sequences over the non-trivial Galois ring”, Mat. Vopr. Kriptogr., 7:3 (2016), 137–143
Citation in format AMSBIB
\Bibitem{Tsy16}
\by V.~N.~Tsypyshev
\paper Lower estimates of ranks of coordinate sequences of maximal period linear recurrent sequences over the non-trivial Galois ring
\jour Mat. Vopr. Kriptogr.
\yr 2016
\vol 7
\issue 3
\pages 137--143
\mathnet{http://mi.mathnet.ru/mvk200}
\crossref{https://doi.org/10.4213/mvk200}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588378}
\elib{https://elibrary.ru/item.asp?id=28931399}
Linking options:
  • https://www.mathnet.ru/eng/mvk200
  • https://doi.org/10.4213/mvk200
  • https://www.mathnet.ru/eng/mvk/v7/i3/p137
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024