Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2016, Volume 7, Issue 3, Pages 29–46
DOI: https://doi.org/10.4213/mvk194
(Mi mvk194)
 

This article is cited in 2 scientific papers (total in 2 papers)

Nonlinearity of a class of Boolean functions constructed using significant bits of linear recurrences over the ring $\mathbb Z_{2^n}$

O. V. Kamlovskiy

Sertification Research Center, LLC, Moscow
Full-text PDF (218 kB) Citations (2)
References:
Abstract: We construct a class of Boolean functions defined by the significant bits of linear recurrent sequences over the ring $\mathbb Z_{2^n}$. For this class of functions bounds for nonlinearity coefficients are obtained.
Key words: Boolean functions, Walsh coefficients, nonlinearity, linear recurrent sequences.
Received 30.V.2016
Bibliographic databases:
Document Type: Article
UDC: 519.113.6+519.719.2
Language: Russian
Citation: O. V. Kamlovskiy, “Nonlinearity of a class of Boolean functions constructed using significant bits of linear recurrences over the ring $\mathbb Z_{2^n}$”, Mat. Vopr. Kriptogr., 7:3 (2016), 29–46
Citation in format AMSBIB
\Bibitem{Kam16}
\by O.~V.~Kamlovskiy
\paper Nonlinearity of a~class of Boolean functions constructed using significant bits of linear recurrences over the ring~$\mathbb Z_{2^n}$
\jour Mat. Vopr. Kriptogr.
\yr 2016
\vol 7
\issue 3
\pages 29--46
\mathnet{http://mi.mathnet.ru/mvk194}
\crossref{https://doi.org/10.4213/mvk194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588372}
\elib{https://elibrary.ru/item.asp?id=28931393}
Linking options:
  • https://www.mathnet.ru/eng/mvk194
  • https://doi.org/10.4213/mvk194
  • https://www.mathnet.ru/eng/mvk/v7/i3/p29
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:380
    Full-text PDF :198
    References:51
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024