Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2015, Volume 6, Issue 2, Pages 45–57
DOI: https://doi.org/10.4213/mvk144
(Mi mvk144)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the complexity of two-dimensional discrete logarithm problem in a finite cyclic group with efficient automorphism

M. V. Nikolaev

Lomonosov Moscow State University, Moscow
Full-text PDF (377 kB) Citations (2)
References:
Abstract: Two-dimensional discrete logarithm problem in a finite additive group $G$ consists in solving the equation $Q=n_1P_1+n_2P_2$ with respect to $n_1$, $n_2$ for specified $P_1,P_2,Q\in G$, $0<N_1,N_2<\sqrt{|G|}$ such that there exists solution with $|n_1|\le N_1$, $|n_2|\le N_2$. In 2004, Gaudry and Schost proposed an algorithm to solve this problem with average complexity $(c+o(1))\sqrt N$ of group operations in $G$ where $c\approx2.43$, $N=4N_1N_2$, $N\to\infty$. In 2009, Galbraith and Ruprai improved this algorithm to obtain $c\approx2.36$. We show that the constant $c$ may be reduced if the group $G$ has an automorphism computable faster than the group operation.
Key words: two-dimensional discrete logarithm problem, Gaudry–Schost algorithm, elliptic curve, efficient automorphism.
Received 16.IX.2014
Bibliographic databases:
Document Type: Article
UDC: 519.712.4+519.719.2
Language: English
Citation: M. V. Nikolaev, “On the complexity of two-dimensional discrete logarithm problem in a finite cyclic group with efficient automorphism”, Mat. Vopr. Kriptogr., 6:2 (2015), 45–57
Citation in format AMSBIB
\Bibitem{Nik15}
\by M.~V.~Nikolaev
\paper On the complexity of two-dimensional discrete logarithm problem in a~finite cyclic group with efficient automorphism
\jour Mat. Vopr. Kriptogr.
\yr 2015
\vol 6
\issue 2
\pages 45--57
\mathnet{http://mi.mathnet.ru/mvk144}
\crossref{https://doi.org/10.4213/mvk144}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3534199}
\elib{https://elibrary.ru/item.asp?id=23823086}
Linking options:
  • https://www.mathnet.ru/eng/mvk144
  • https://doi.org/10.4213/mvk144
  • https://www.mathnet.ru/eng/mvk/v6/i2/p45
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:473
    Full-text PDF :233
    References:62
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024