|
On a property of quadratic Boolean functions
N. A. Kolomeec Sobolev Institute of Mathematics SB RAS, Novosibirsk
Abstract:
Let a Boolean function $f$ in $2k$ variables be affine on an affine subspace of dimension $k$ if and only if $f$ is affine on any its shift. Then it is proved that algebraic degree of $f$ may be more than 2 only if there is no affine subspace of dimension $k$ that $f$ is affine on it.
Key words:
Boolean functions, bent functions, quadratic functions.
Received 25.IX.2013
Citation:
N. A. Kolomeec, “On a property of quadratic Boolean functions”, Mat. Vopr. Kriptogr., 5:2 (2014), 79–85
Linking options:
https://www.mathnet.ru/eng/mvk119https://doi.org/10.4213/mvk119 https://www.mathnet.ru/eng/mvk/v5/i2/p79
|
Statistics & downloads: |
Abstract page: | 367 | Full-text PDF : | 197 | References: | 47 | First page: | 3 |
|